Files
azerothcore-wotlk/src/common/Utilities/Util.h

987 lines
26 KiB
C++

/*
* Copyright (C) 2016+ AzerothCore <www.azerothcore.org>, released under GNU GPL v2 license, you may redistribute it and/or modify it under version 2 of the License, or (at your option), any later version.
* Copyright (C) 2008-2016 TrinityCore <http://www.trinitycore.org/>
* Copyright (C) 2005-2009 MaNGOS <http://getmangos.com/>
*/
#ifndef _UTIL_H
#define _UTIL_H
#include "Containers.h"
#include "Define.h"
#include "Errors.h"
#include <ace/INET_Addr.h>
#include <algorithm>
#include <array>
#include <cctype>
#include <list>
#include <map>
#include <string>
#include <vector>
// Searcher for map of structs
template<typename T, class S> struct Finder
{
T val_;
T S::* idMember_;
Finder(T val, T S::* idMember) : val_(val), idMember_(idMember) {}
bool operator()(const std::pair<int, S>& obj) { return obj.second.*idMember_ == val_; }
};
class Tokenizer
{
public:
typedef std::vector<char const*> StorageType;
typedef StorageType::size_type size_type;
typedef StorageType::const_iterator const_iterator;
typedef StorageType::reference reference;
typedef StorageType::const_reference const_reference;
public:
Tokenizer(const std::string& src, char const sep, uint32 vectorReserve = 0);
~Tokenizer() { delete[] m_str; }
[[nodiscard]] const_iterator begin() const { return m_storage.begin(); }
[[nodiscard]] const_iterator end() const { return m_storage.end(); }
[[nodiscard]] size_type size() const { return m_storage.size(); }
reference operator [] (size_type i) { return m_storage[i]; }
const_reference operator [] (size_type i) const { return m_storage[i]; }
private:
char* m_str;
StorageType m_storage;
};
struct tm* localtime_r(time_t const* time, struct tm* result);
time_t LocalTimeToUTCTime(time_t time);
time_t GetLocalHourTimestamp(time_t time, uint8 hour, bool onlyAfterTime = true);
tm TimeBreakdown(time_t t);
void stripLineInvisibleChars(std::string& src);
int32 MoneyStringToMoney(const std::string& moneyString);
std::string secsToTimeString(uint64 timeInSecs, bool shortText = false);
uint32 TimeStringToSecs(const std::string& timestring);
std::string TimeToTimestampStr(time_t t);
std::string TimeToHumanReadable(time_t t);
inline void ApplyPercentModFloatVar(float& var, float val, bool apply)
{
if (val == -100.0f) // prevent set var to zero
{
val = -99.99f;
}
var *= (apply ? (100.0f + val) / 100.0f : 100.0f / (100.0f + val));
}
// Percentage calculation
template <class T, class U>
inline T CalculatePct(T base, U pct)
{
return T(base * static_cast<float>(pct) / 100.0f);
}
template <class T, class U>
inline T AddPct(T& base, U pct)
{
return base += CalculatePct(base, pct);
}
template <class T, class U>
inline T ApplyPct(T& base, U pct)
{
return base = CalculatePct(base, pct);
}
template <class T>
inline T RoundToInterval(T& num, T floor, T ceil)
{
return num = std::min(std::max(num, floor), ceil);
}
// UTF8 handling
bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr);
// in wsize==max size of buffer, out wsize==real string size
bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize);
inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize)
{
return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize);
}
bool WStrToUtf8(std::wstring const& wstr, std::string& utf8str);
// size==real string size
bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str);
// set string to "" if invalid utf8 sequence
size_t utf8length(std::string& utf8str);
void utf8truncate(std::string& utf8str, size_t len);
inline bool isBasicLatinCharacter(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
{
return true;
}
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
{
return true;
}
return false;
}
inline bool isExtendedLatinCharacter(wchar_t wchar)
{
if (isBasicLatinCharacter(wchar))
{
return true;
}
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
{
return true;
}
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
{
return true;
}
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
{
return true;
}
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
{
return true;
}
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
{
return true;
}
if (wchar >= 0x0100 && wchar <= 0x012F) // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK
{
return true;
}
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
{
return true;
}
return false;
}
inline bool isCyrillicCharacter(wchar_t wchar)
{
if (wchar >= 0x0410 && wchar <= 0x044F) // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA
{
return true;
}
if (wchar == 0x0401 || wchar == 0x0451) // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO
{
return true;
}
return false;
}
inline bool isEastAsianCharacter(wchar_t wchar)
{
if (wchar >= 0x1100 && wchar <= 0x11F9) // Hangul Jamo
{
return true;
}
if (wchar >= 0x3041 && wchar <= 0x30FF) // Hiragana + Katakana
{
return true;
}
if (wchar >= 0x3131 && wchar <= 0x318E) // Hangul Compatibility Jamo
{
return true;
}
if (wchar >= 0x31F0 && wchar <= 0x31FF) // Katakana Phonetic Ext.
{
return true;
}
if (wchar >= 0x3400 && wchar <= 0x4DB5) // CJK Ideographs Ext. A
{
return true;
}
if (wchar >= 0x4E00 && wchar <= 0x9FC3) // Unified CJK Ideographs
{
return true;
}
if (wchar >= 0xAC00 && wchar <= 0xD7A3) // Hangul Syllables
{
return true;
}
if (wchar >= 0xFF01 && wchar <= 0xFFEE) // Halfwidth forms
{
return true;
}
return false;
}
inline bool isNumeric(wchar_t wchar)
{
return (wchar >= L'0' && wchar <= L'9');
}
inline bool isNumeric(char c)
{
return (c >= '0' && c <= '9');
}
inline bool isNumeric(char const* str)
{
for (char const* c = str; *c; ++c)
if (!isNumeric(*c))
{
return false;
}
return true;
}
inline bool isNumericOrSpace(wchar_t wchar)
{
return isNumeric(wchar) || wchar == L' ';
}
inline bool isBasicLatinString(const std::wstring& wstr, bool numericOrSpace)
{
for (wchar_t i : wstr)
if (!isBasicLatinCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i)))
{
return false;
}
return true;
}
inline bool isExtendedLatinString(const std::wstring& wstr, bool numericOrSpace)
{
for (wchar_t i : wstr)
if (!isExtendedLatinCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i)))
{
return false;
}
return true;
}
inline bool isCyrillicString(const std::wstring& wstr, bool numericOrSpace)
{
for (wchar_t i : wstr)
if (!isCyrillicCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i)))
{
return false;
}
return true;
}
inline bool isEastAsianString(const std::wstring& wstr, bool numericOrSpace)
{
for (wchar_t i : wstr)
if (!isEastAsianCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i)))
{
return false;
}
return true;
}
inline wchar_t wcharToUpper(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
{
return wchar_t(uint16(wchar) - 0x0020);
}
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
{
return wchar_t(0x1E9E);
}
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
{
return wchar_t(uint16(wchar) - 0x0020);
}
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
{
return wchar_t(uint16(wchar) - 0x0020);
}
if (wchar >= 0x0101 && wchar <= 0x012F) // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1)
{
if (wchar % 2 == 1)
{
return wchar_t(uint16(wchar) - 0x0001);
}
}
if (wchar >= 0x0430 && wchar <= 0x044F) // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA
{
return wchar_t(uint16(wchar) - 0x0020);
}
if (wchar == 0x0451) // CYRILLIC SMALL LETTER IO
{
return wchar_t(0x0401);
}
return wchar;
}
inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar)
{
return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar;
}
inline wchar_t wcharToLower(wchar_t wchar)
{
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
{
return wchar_t(uint16(wchar) + 0x0020);
}
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
{
return wchar_t(uint16(wchar) + 0x0020);
}
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
{
return wchar_t(uint16(wchar) + 0x0020);
}
if (wchar >= 0x0100 && wchar <= 0x012E) // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0)
{
if (wchar % 2 == 0)
{
return wchar_t(uint16(wchar) + 0x0001);
}
}
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
{
return wchar_t(0x00DF);
}
if (wchar == 0x0401) // CYRILLIC CAPITAL LETTER IO
{
return wchar_t(0x0451);
}
if (wchar >= 0x0410 && wchar <= 0x042F) // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA
{
return wchar_t(uint16(wchar) + 0x0020);
}
return wchar;
}
void wstrToUpper(std::wstring& str);
void wstrToLower(std::wstring& str);
std::wstring GetMainPartOfName(std::wstring const& wname, uint32 declension);
bool utf8ToConsole(const std::string& utf8str, std::string& conStr);
bool consoleToUtf8(const std::string& conStr, std::string& utf8str);
bool Utf8FitTo(const std::string& str, std::wstring const& search);
void utf8printf(FILE* out, const char* str, ...);
void vutf8printf(FILE* out, const char* str, va_list* ap);
bool Utf8ToUpperOnlyLatin(std::string& utf8String);
bool IsIPAddress(char const* ipaddress);
/// Checks if address belongs to the a network with specified submask
bool IsIPAddrInNetwork(ACE_INET_Addr const& net, ACE_INET_Addr const& addr, ACE_INET_Addr const& subnetMask);
/// Transforms ACE_INET_Addr address into string format "dotted_ip:port"
std::string GetAddressString(ACE_INET_Addr const& addr);
uint32 CreatePIDFile(const std::string& filename);
uint32 GetPID();
bool StringEqualI(std::string_view str1, std::string_view str2);
namespace Acore::Impl
{
std::string ByteArrayToHexStr(uint8 const* bytes, size_t length, bool reverse = false);
void HexStrToByteArray(std::string const& str, uint8* out, size_t outlen, bool reverse = false);
}
template<typename Container>
std::string ByteArrayToHexStr(Container const& c, bool reverse = false)
{
return Acore::Impl::ByteArrayToHexStr(std::data(c), std::size(c), reverse);
}
template<size_t Size>
void HexStrToByteArray(std::string const& str, std::array<uint8, Size>& buf, bool reverse = false)
{
Acore::Impl::HexStrToByteArray(str, buf.data(), Size, reverse);
}
template<size_t Size>
std::array<uint8, Size> HexStrToByteArray(std::string const& str, bool reverse = false)
{
std::array<uint8, Size> arr;
HexStrToByteArray(str, arr, reverse);
return arr;
}
bool StringContainsStringI(std::string const& haystack, std::string const& needle);
template <typename T>
inline bool ValueContainsStringI(std::pair<T, std::string> const& haystack, std::string const& needle)
{
return StringContainsStringI(haystack.second, needle);
}
#endif
//handler for operations on large flags
#ifndef _FLAG96
#define _FLAG96
// simple class for not-modifyable list
template <typename T>
class HookList
{
typedef typename std::list<T>::iterator ListIterator;
private:
typename std::list<T> m_list;
public:
HookList<T>& operator+=(T t)
{
m_list.push_back(t);
return *this;
}
HookList<T>& operator-=(T t)
{
m_list.remove(t);
return *this;
}
size_t size()
{
return m_list.size();
}
ListIterator begin()
{
return m_list.begin();
}
ListIterator end()
{
return m_list.end();
}
};
class flag96
{
private:
uint32 part[3];
public:
flag96(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
[[nodiscard]] inline bool IsEqual(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] == p1 && part[1] == p2 && part[2] == p3);
}
[[nodiscard]] inline bool HasFlag(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] & p1 || part[1] & p2 || part[2] & p3);
}
inline void Set(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
inline bool operator<(flag96 const& right) const
{
for (uint8 i = 3; i > 0; --i)
{
if (part[i - 1] < right.part[i - 1])
{
return true;
}
else if (part[i - 1] > right.part[i - 1])
{
return false;
}
}
return false;
}
inline bool operator==(flag96 const& right) const
{
return
(
part[0] == right.part[0] &&
part[1] == right.part[1] &&
part[2] == right.part[2]
);
}
inline bool operator!=(flag96 const& right) const
{
return !(*this == right);
}
inline flag96& operator=(flag96 const& right)
{
part[0] = right.part[0];
part[1] = right.part[1];
part[2] = right.part[2];
return *this;
}
/* requried as of C++ 11 */
#if __cplusplus >= 201103L
flag96(const flag96&) = default;
flag96(flag96&&) = default;
#endif
inline flag96 operator&(flag96 const& right) const
{
return flag96(part[0] & right.part[0], part[1] & right.part[1], part[2] & right.part[2]);
}
inline flag96& operator&=(flag96 const& right)
{
part[0] &= right.part[0];
part[1] &= right.part[1];
part[2] &= right.part[2];
return *this;
}
inline flag96 operator|(flag96 const& right) const
{
return flag96(part[0] | right.part[0], part[1] | right.part[1], part[2] | right.part[2]);
}
inline flag96& operator |=(flag96 const& right)
{
part[0] |= right.part[0];
part[1] |= right.part[1];
part[2] |= right.part[2];
return *this;
}
inline flag96 operator~() const
{
return flag96(~part[0], ~part[1], ~part[2]);
}
inline flag96 operator^(flag96 const& right) const
{
return flag96(part[0] ^ right.part[0], part[1] ^ right.part[1], part[2] ^ right.part[2]);
}
inline flag96& operator^=(flag96 const& right)
{
part[0] ^= right.part[0];
part[1] ^= right.part[1];
part[2] ^= right.part[2];
return *this;
}
inline operator bool() const
{
return (part[0] != 0 || part[1] != 0 || part[2] != 0);
}
inline bool operator !() const
{
return !(bool(*this));
}
inline uint32& operator[](uint8 el)
{
return part[el];
}
inline uint32 const& operator [](uint8 el) const
{
return part[el];
}
};
enum ComparisionType
{
COMP_TYPE_EQ = 0,
COMP_TYPE_HIGH,
COMP_TYPE_LOW,
COMP_TYPE_HIGH_EQ,
COMP_TYPE_LOW_EQ,
COMP_TYPE_MAX
};
template <class T>
bool CompareValues(ComparisionType type, T val1, T val2)
{
switch (type)
{
case COMP_TYPE_EQ:
return val1 == val2;
case COMP_TYPE_HIGH:
return val1 > val2;
case COMP_TYPE_LOW:
return val1 < val2;
case COMP_TYPE_HIGH_EQ:
return val1 >= val2;
case COMP_TYPE_LOW_EQ:
return val1 <= val2;
default:
// incorrect parameter
ABORT();
return false;
}
}
class EventMap
{
typedef std::multimap<uint32, uint32> EventStore;
public:
EventMap() { }
/**
* @name Reset
* @brief Removes all scheduled events and resets time and phase.
*/
void Reset()
{
_eventMap.clear();
_time = 0;
_phase = 0;
}
/**
* @name Update
* @brief Updates the timer of the event map.
* @param time Value to be added to time.
*/
void Update(uint32 time)
{
_time += time;
}
/**
* @name GetTimer
* @return Current timer value.
*/
[[nodiscard]] uint32 GetTimer() const
{
return _time;
}
void SetTimer(uint32 time)
{
_time = time;
}
/**
* @name GetPhaseMask
* @return Active phases as mask.
*/
[[nodiscard]] uint8 GetPhaseMask() const
{
return _phase;
}
/**
* @name Empty
* @return True, if there are no events scheduled.
*/
[[nodiscard]] bool Empty() const
{
return _eventMap.empty();
}
/**
* @name SetPhase
* @brief Sets the phase of the map (absolute).
* @param phase Phase which should be set. Values: 1 - 8. 0 resets phase.
*/
void SetPhase(uint8 phase)
{
if (!phase)
{
_phase = 0;
}
else if (phase <= 8)
{
_phase = (1 << (phase - 1));
}
}
/**
* @name AddPhase
* @brief Activates the given phase (bitwise).
* @param phase Phase which should be activated. Values: 1 - 8
*/
void AddPhase(uint8 phase)
{
if (phase && phase <= 8)
{
_phase |= (1 << (phase - 1));
}
}
/**
* @name RemovePhase
* @brief Deactivates the given phase (bitwise).
* @param phase Phase which should be deactivated. Values: 1 - 8.
*/
void RemovePhase(uint8 phase)
{
if (phase && phase <= 8)
{
_phase &= ~(1 << (phase - 1));
}
}
/**
* @name ScheduleEvent
* @brief Creates new event entry in map.
* @param eventId The id of the new event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint32 phase = 0)
{
if (group && group <= 8)
{
eventId |= (1 << (group + 15));
}
if (phase && phase <= 8)
{
eventId |= (1 << (phase + 23));
}
_eventMap.insert(EventStore::value_type(_time + time, eventId));
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RescheduleEvent(uint32 eventId, uint32 time, uint32 groupId = 0, uint32 phase = 0)
{
CancelEvent(eventId);
ScheduleEvent(eventId, time, groupId, phase);
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RepeatEvent(uint32 time)
{
_eventMap.insert(EventStore::value_type(_time + time, _lastEvent));
}
/**
* @name ExecuteEvent
* @brief Returns the next event to execute and removes it from map.
* @return Id of the event to execute.
*/
uint32 ExecuteEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
{
return 0;
}
else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase))
{
_eventMap.erase(itr);
}
else
{
uint32 eventId = (itr->second & 0x0000FFFF);
_lastEvent = itr->second;
_eventMap.erase(itr);
return eventId;
}
}
return 0;
}
/**
* @name DelayEvents
* @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0.
* @param delay Amount of delay.
*/
void DelayEvents(uint32 delay)
{
_time = delay < _time ? _time - delay : 0;
}
void DelayEventsToMax(uint32 delay, uint32 group)
{
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->first < _time + delay && (group == 0 || ((1 << (group + 15)) & itr->second)))
{
ScheduleEvent(itr->second, delay);
_eventMap.erase(itr);
itr = _eventMap.begin();
continue;
}
++itr;
}
}
/**
* @name DelayEvents
* @brief Delay all events of the same group.
* @param delay Amount of delay.
* @param group Group of the events.
*/
void DelayEvents(uint32 delay, uint32 group)
{
if (group > 8 || Empty())
{
return;
}
EventStore delayed;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (!group || (itr->second & (1 << (group + 15))))
{
delayed.insert(EventStore::value_type(itr->first + delay, itr->second));
itr = _eventMap.erase(itr);
continue;
}
++itr;
}
_eventMap.insert(delayed.begin(), delayed.end());
}
/**
* @name CancelEvent
* @brief Cancels all events of the specified id.
* @param eventId Event id to cancel.
*/
void CancelEvent(uint32 eventId)
{
if (Empty())
{
return;
}
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (eventId == (itr->second & 0x0000FFFF))
{
itr = _eventMap.erase(itr);
continue;
}
++itr;
}
}
/**
* @name CancelEventGroup
* @brief Cancel events belonging to specified group.
* @param group Group to cancel.
*/
void CancelEventGroup(uint32 group)
{
if (!group || group > 8 || Empty())
{
return;
}
uint32 groupMask = (1 << (group + 15));
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & groupMask)
{
_eventMap.erase(itr);
itr = _eventMap.begin();
continue;
}
++itr;
}
}
/**
* @name GetNextEventTime
* @brief Returns closest occurence of specified event.
* @param eventId Wanted event id.
* @return Time of found event.
*/
[[nodiscard]] uint32 GetNextEventTime(uint32 eventId) const
{
if (Empty())
{
return 0;
}
for (auto const& itr : _eventMap)
{
if (eventId == (itr.second & 0x0000FFFF))
{
return itr.first;
}
}
return 0;
}
/**
* @name GetNextEventTime
* @return Time of next event.
*/
[[nodiscard]] uint32 GetNextEventTime() const
{
return Empty() ? 0 : _eventMap.begin()->first;
}
/**
* @name IsInPhase
* @brief Returns wether event map is in specified phase or not.
* @param phase Wanted phase.
* @return True, if phase of event map contains specified phase.
*/
bool IsInPhase(uint8 phase)
{
return phase <= 8 && (!phase || _phase & (1 << (phase - 1)));
}
private:
uint32 _time{0};
uint32 _phase{0};
uint32 _lastEvent{0};
EventStore _eventMap;
};
template<typename E>
typename std::underlying_type<E>::type AsUnderlyingType(E enumValue)
{
static_assert(std::is_enum<E>::value, "AsUnderlyingType can only be used with enums");
return static_cast<typename std::underlying_type<E>::type>(enumValue);
}
#endif