/* * Copyright (C) 2016+ AzerothCore , released under GNU GPL v2 license, you may redistribute it and/or modify it under version 2 of the License, or (at your option), any later version. * Copyright (C) 2008-2016 TrinityCore * Copyright (C) 2005-2009 MaNGOS */ #ifndef _UTIL_H #define _UTIL_H #include "Containers.h" #include "Define.h" #include "Errors.h" #include #include #include #include #include #include #include #include // Searcher for map of structs template struct Finder { T val_; T S::* idMember_; Finder(T val, T S::* idMember) : val_(val), idMember_(idMember) {} bool operator()(const std::pair& obj) { return obj.second.*idMember_ == val_; } }; class Tokenizer { public: typedef std::vector StorageType; typedef StorageType::size_type size_type; typedef StorageType::const_iterator const_iterator; typedef StorageType::reference reference; typedef StorageType::const_reference const_reference; public: Tokenizer(const std::string& src, char const sep, uint32 vectorReserve = 0); ~Tokenizer() { delete[] m_str; } [[nodiscard]] const_iterator begin() const { return m_storage.begin(); } [[nodiscard]] const_iterator end() const { return m_storage.end(); } [[nodiscard]] size_type size() const { return m_storage.size(); } reference operator [] (size_type i) { return m_storage[i]; } const_reference operator [] (size_type i) const { return m_storage[i]; } private: char* m_str; StorageType m_storage; }; struct tm* localtime_r(time_t const* time, struct tm* result); time_t LocalTimeToUTCTime(time_t time); time_t GetLocalHourTimestamp(time_t time, uint8 hour, bool onlyAfterTime = true); tm TimeBreakdown(time_t t); void stripLineInvisibleChars(std::string& src); int32 MoneyStringToMoney(const std::string& moneyString); std::string secsToTimeString(uint64 timeInSecs, bool shortText = false); uint32 TimeStringToSecs(const std::string& timestring); std::string TimeToTimestampStr(time_t t); std::string TimeToHumanReadable(time_t t); inline void ApplyPercentModFloatVar(float& var, float val, bool apply) { if (val == -100.0f) // prevent set var to zero { val = -99.99f; } var *= (apply ? (100.0f + val) / 100.0f : 100.0f / (100.0f + val)); } // Percentage calculation template inline T CalculatePct(T base, U pct) { return T(base * static_cast(pct) / 100.0f); } template inline T AddPct(T& base, U pct) { return base += CalculatePct(base, pct); } template inline T ApplyPct(T& base, U pct) { return base = CalculatePct(base, pct); } template inline T RoundToInterval(T& num, T floor, T ceil) { return num = std::min(std::max(num, floor), ceil); } // UTF8 handling bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr); // in wsize==max size of buffer, out wsize==real string size bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize); inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize) { return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize); } bool WStrToUtf8(std::wstring const& wstr, std::string& utf8str); // size==real string size bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str); // set string to "" if invalid utf8 sequence size_t utf8length(std::string& utf8str); void utf8truncate(std::string& utf8str, size_t len); inline bool isBasicLatinCharacter(wchar_t wchar) { if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z { return true; } if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z { return true; } return false; } inline bool isExtendedLatinCharacter(wchar_t wchar) { if (isBasicLatinCharacter(wchar)) { return true; } if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS { return true; } if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN { return true; } if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S { return true; } if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS { return true; } if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN { return true; } if (wchar >= 0x0100 && wchar <= 0x012F) // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK { return true; } if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S { return true; } return false; } inline bool isCyrillicCharacter(wchar_t wchar) { if (wchar >= 0x0410 && wchar <= 0x044F) // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA { return true; } if (wchar == 0x0401 || wchar == 0x0451) // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO { return true; } return false; } inline bool isEastAsianCharacter(wchar_t wchar) { if (wchar >= 0x1100 && wchar <= 0x11F9) // Hangul Jamo { return true; } if (wchar >= 0x3041 && wchar <= 0x30FF) // Hiragana + Katakana { return true; } if (wchar >= 0x3131 && wchar <= 0x318E) // Hangul Compatibility Jamo { return true; } if (wchar >= 0x31F0 && wchar <= 0x31FF) // Katakana Phonetic Ext. { return true; } if (wchar >= 0x3400 && wchar <= 0x4DB5) // CJK Ideographs Ext. A { return true; } if (wchar >= 0x4E00 && wchar <= 0x9FC3) // Unified CJK Ideographs { return true; } if (wchar >= 0xAC00 && wchar <= 0xD7A3) // Hangul Syllables { return true; } if (wchar >= 0xFF01 && wchar <= 0xFFEE) // Halfwidth forms { return true; } return false; } inline bool isNumeric(wchar_t wchar) { return (wchar >= L'0' && wchar <= L'9'); } inline bool isNumeric(char c) { return (c >= '0' && c <= '9'); } inline bool isNumeric(char const* str) { for (char const* c = str; *c; ++c) if (!isNumeric(*c)) { return false; } return true; } inline bool isNumericOrSpace(wchar_t wchar) { return isNumeric(wchar) || wchar == L' '; } inline bool isBasicLatinString(const std::wstring& wstr, bool numericOrSpace) { for (wchar_t i : wstr) if (!isBasicLatinCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i))) { return false; } return true; } inline bool isExtendedLatinString(const std::wstring& wstr, bool numericOrSpace) { for (wchar_t i : wstr) if (!isExtendedLatinCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i))) { return false; } return true; } inline bool isCyrillicString(const std::wstring& wstr, bool numericOrSpace) { for (wchar_t i : wstr) if (!isCyrillicCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i))) { return false; } return true; } inline bool isEastAsianString(const std::wstring& wstr, bool numericOrSpace) { for (wchar_t i : wstr) if (!isEastAsianCharacter(i) && (!numericOrSpace || !isNumericOrSpace(i))) { return false; } return true; } inline wchar_t wcharToUpper(wchar_t wchar) { if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z { return wchar_t(uint16(wchar) - 0x0020); } if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S { return wchar_t(0x1E9E); } if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS { return wchar_t(uint16(wchar) - 0x0020); } if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN { return wchar_t(uint16(wchar) - 0x0020); } if (wchar >= 0x0101 && wchar <= 0x012F) // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1) { if (wchar % 2 == 1) { return wchar_t(uint16(wchar) - 0x0001); } } if (wchar >= 0x0430 && wchar <= 0x044F) // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA { return wchar_t(uint16(wchar) - 0x0020); } if (wchar == 0x0451) // CYRILLIC SMALL LETTER IO { return wchar_t(0x0401); } return wchar; } inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar) { return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar; } inline wchar_t wcharToLower(wchar_t wchar) { if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z { return wchar_t(uint16(wchar) + 0x0020); } if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS { return wchar_t(uint16(wchar) + 0x0020); } if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN { return wchar_t(uint16(wchar) + 0x0020); } if (wchar >= 0x0100 && wchar <= 0x012E) // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0) { if (wchar % 2 == 0) { return wchar_t(uint16(wchar) + 0x0001); } } if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S { return wchar_t(0x00DF); } if (wchar == 0x0401) // CYRILLIC CAPITAL LETTER IO { return wchar_t(0x0451); } if (wchar >= 0x0410 && wchar <= 0x042F) // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA { return wchar_t(uint16(wchar) + 0x0020); } return wchar; } void wstrToUpper(std::wstring& str); void wstrToLower(std::wstring& str); std::wstring GetMainPartOfName(std::wstring const& wname, uint32 declension); bool utf8ToConsole(const std::string& utf8str, std::string& conStr); bool consoleToUtf8(const std::string& conStr, std::string& utf8str); bool Utf8FitTo(const std::string& str, std::wstring const& search); void utf8printf(FILE* out, const char* str, ...); void vutf8printf(FILE* out, const char* str, va_list* ap); bool Utf8ToUpperOnlyLatin(std::string& utf8String); bool IsIPAddress(char const* ipaddress); /// Checks if address belongs to the a network with specified submask bool IsIPAddrInNetwork(ACE_INET_Addr const& net, ACE_INET_Addr const& addr, ACE_INET_Addr const& subnetMask); /// Transforms ACE_INET_Addr address into string format "dotted_ip:port" std::string GetAddressString(ACE_INET_Addr const& addr); uint32 CreatePIDFile(const std::string& filename); uint32 GetPID(); bool StringEqualI(std::string_view str1, std::string_view str2); namespace Acore::Impl { std::string ByteArrayToHexStr(uint8 const* bytes, size_t length, bool reverse = false); void HexStrToByteArray(std::string const& str, uint8* out, size_t outlen, bool reverse = false); } template std::string ByteArrayToHexStr(Container const& c, bool reverse = false) { return Acore::Impl::ByteArrayToHexStr(std::data(c), std::size(c), reverse); } template void HexStrToByteArray(std::string const& str, std::array& buf, bool reverse = false) { Acore::Impl::HexStrToByteArray(str, buf.data(), Size, reverse); } template std::array HexStrToByteArray(std::string const& str, bool reverse = false) { std::array arr; HexStrToByteArray(str, arr, reverse); return arr; } bool StringContainsStringI(std::string const& haystack, std::string const& needle); template inline bool ValueContainsStringI(std::pair const& haystack, std::string const& needle) { return StringContainsStringI(haystack.second, needle); } #endif //handler for operations on large flags #ifndef _FLAG96 #define _FLAG96 // simple class for not-modifyable list template class HookList { typedef typename std::list::iterator ListIterator; private: typename std::list m_list; public: HookList& operator+=(T t) { m_list.push_back(t); return *this; } HookList& operator-=(T t) { m_list.remove(t); return *this; } size_t size() { return m_list.size(); } ListIterator begin() { return m_list.begin(); } ListIterator end() { return m_list.end(); } }; class flag96 { private: uint32 part[3]; public: flag96(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) { part[0] = p1; part[1] = p2; part[2] = p3; } [[nodiscard]] inline bool IsEqual(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const { return (part[0] == p1 && part[1] == p2 && part[2] == p3); } [[nodiscard]] inline bool HasFlag(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const { return (part[0] & p1 || part[1] & p2 || part[2] & p3); } inline void Set(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) { part[0] = p1; part[1] = p2; part[2] = p3; } inline bool operator<(flag96 const& right) const { for (uint8 i = 3; i > 0; --i) { if (part[i - 1] < right.part[i - 1]) { return true; } else if (part[i - 1] > right.part[i - 1]) { return false; } } return false; } inline bool operator==(flag96 const& right) const { return ( part[0] == right.part[0] && part[1] == right.part[1] && part[2] == right.part[2] ); } inline bool operator!=(flag96 const& right) const { return !(*this == right); } inline flag96& operator=(flag96 const& right) { part[0] = right.part[0]; part[1] = right.part[1]; part[2] = right.part[2]; return *this; } /* requried as of C++ 11 */ #if __cplusplus >= 201103L flag96(const flag96&) = default; flag96(flag96&&) = default; #endif inline flag96 operator&(flag96 const& right) const { return flag96(part[0] & right.part[0], part[1] & right.part[1], part[2] & right.part[2]); } inline flag96& operator&=(flag96 const& right) { part[0] &= right.part[0]; part[1] &= right.part[1]; part[2] &= right.part[2]; return *this; } inline flag96 operator|(flag96 const& right) const { return flag96(part[0] | right.part[0], part[1] | right.part[1], part[2] | right.part[2]); } inline flag96& operator |=(flag96 const& right) { part[0] |= right.part[0]; part[1] |= right.part[1]; part[2] |= right.part[2]; return *this; } inline flag96 operator~() const { return flag96(~part[0], ~part[1], ~part[2]); } inline flag96 operator^(flag96 const& right) const { return flag96(part[0] ^ right.part[0], part[1] ^ right.part[1], part[2] ^ right.part[2]); } inline flag96& operator^=(flag96 const& right) { part[0] ^= right.part[0]; part[1] ^= right.part[1]; part[2] ^= right.part[2]; return *this; } inline operator bool() const { return (part[0] != 0 || part[1] != 0 || part[2] != 0); } inline bool operator !() const { return !(bool(*this)); } inline uint32& operator[](uint8 el) { return part[el]; } inline uint32 const& operator [](uint8 el) const { return part[el]; } }; enum ComparisionType { COMP_TYPE_EQ = 0, COMP_TYPE_HIGH, COMP_TYPE_LOW, COMP_TYPE_HIGH_EQ, COMP_TYPE_LOW_EQ, COMP_TYPE_MAX }; template bool CompareValues(ComparisionType type, T val1, T val2) { switch (type) { case COMP_TYPE_EQ: return val1 == val2; case COMP_TYPE_HIGH: return val1 > val2; case COMP_TYPE_LOW: return val1 < val2; case COMP_TYPE_HIGH_EQ: return val1 >= val2; case COMP_TYPE_LOW_EQ: return val1 <= val2; default: // incorrect parameter ABORT(); return false; } } class EventMap { typedef std::multimap EventStore; public: EventMap() { } /** * @name Reset * @brief Removes all scheduled events and resets time and phase. */ void Reset() { _eventMap.clear(); _time = 0; _phase = 0; } /** * @name Update * @brief Updates the timer of the event map. * @param time Value to be added to time. */ void Update(uint32 time) { _time += time; } /** * @name GetTimer * @return Current timer value. */ [[nodiscard]] uint32 GetTimer() const { return _time; } void SetTimer(uint32 time) { _time = time; } /** * @name GetPhaseMask * @return Active phases as mask. */ [[nodiscard]] uint8 GetPhaseMask() const { return _phase; } /** * @name Empty * @return True, if there are no events scheduled. */ [[nodiscard]] bool Empty() const { return _eventMap.empty(); } /** * @name SetPhase * @brief Sets the phase of the map (absolute). * @param phase Phase which should be set. Values: 1 - 8. 0 resets phase. */ void SetPhase(uint8 phase) { if (!phase) { _phase = 0; } else if (phase <= 8) { _phase = (1 << (phase - 1)); } } /** * @name AddPhase * @brief Activates the given phase (bitwise). * @param phase Phase which should be activated. Values: 1 - 8 */ void AddPhase(uint8 phase) { if (phase && phase <= 8) { _phase |= (1 << (phase - 1)); } } /** * @name RemovePhase * @brief Deactivates the given phase (bitwise). * @param phase Phase which should be deactivated. Values: 1 - 8. */ void RemovePhase(uint8 phase) { if (phase && phase <= 8) { _phase &= ~(1 << (phase - 1)); } } /** * @name ScheduleEvent * @brief Creates new event entry in map. * @param eventId The id of the new event. * @param time The time in milliseconds until the event occurs. * @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group. * @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases. */ void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint32 phase = 0) { if (group && group <= 8) { eventId |= (1 << (group + 15)); } if (phase && phase <= 8) { eventId |= (1 << (phase + 23)); } _eventMap.insert(EventStore::value_type(_time + time, eventId)); } /** * @name RescheduleEvent * @brief Cancels the given event and reschedules it. * @param eventId The id of the event. * @param time The time in milliseconds until the event occurs. * @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group. * @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases. */ void RescheduleEvent(uint32 eventId, uint32 time, uint32 groupId = 0, uint32 phase = 0) { CancelEvent(eventId); ScheduleEvent(eventId, time, groupId, phase); } /** * @name RescheduleEvent * @brief Cancels the given event and reschedules it. * @param eventId The id of the event. * @param time The time in milliseconds until the event occurs. * @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group. * @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases. */ void RepeatEvent(uint32 time) { _eventMap.insert(EventStore::value_type(_time + time, _lastEvent)); } /** * @name ExecuteEvent * @brief Returns the next event to execute and removes it from map. * @return Id of the event to execute. */ uint32 ExecuteEvent() { while (!Empty()) { EventStore::iterator itr = _eventMap.begin(); if (itr->first > _time) { return 0; } else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase)) { _eventMap.erase(itr); } else { uint32 eventId = (itr->second & 0x0000FFFF); _lastEvent = itr->second; _eventMap.erase(itr); return eventId; } } return 0; } /** * @name DelayEvents * @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0. * @param delay Amount of delay. */ void DelayEvents(uint32 delay) { _time = delay < _time ? _time - delay : 0; } void DelayEventsToMax(uint32 delay, uint32 group) { for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (itr->first < _time + delay && (group == 0 || ((1 << (group + 15)) & itr->second))) { ScheduleEvent(itr->second, delay); _eventMap.erase(itr); itr = _eventMap.begin(); continue; } ++itr; } } /** * @name DelayEvents * @brief Delay all events of the same group. * @param delay Amount of delay. * @param group Group of the events. */ void DelayEvents(uint32 delay, uint32 group) { if (group > 8 || Empty()) { return; } EventStore delayed; for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (!group || (itr->second & (1 << (group + 15)))) { delayed.insert(EventStore::value_type(itr->first + delay, itr->second)); itr = _eventMap.erase(itr); continue; } ++itr; } _eventMap.insert(delayed.begin(), delayed.end()); } /** * @name CancelEvent * @brief Cancels all events of the specified id. * @param eventId Event id to cancel. */ void CancelEvent(uint32 eventId) { if (Empty()) { return; } for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (eventId == (itr->second & 0x0000FFFF)) { itr = _eventMap.erase(itr); continue; } ++itr; } } /** * @name CancelEventGroup * @brief Cancel events belonging to specified group. * @param group Group to cancel. */ void CancelEventGroup(uint32 group) { if (!group || group > 8 || Empty()) { return; } uint32 groupMask = (1 << (group + 15)); for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();) { if (itr->second & groupMask) { _eventMap.erase(itr); itr = _eventMap.begin(); continue; } ++itr; } } /** * @name GetNextEventTime * @brief Returns closest occurence of specified event. * @param eventId Wanted event id. * @return Time of found event. */ [[nodiscard]] uint32 GetNextEventTime(uint32 eventId) const { if (Empty()) { return 0; } for (auto const& itr : _eventMap) { if (eventId == (itr.second & 0x0000FFFF)) { return itr.first; } } return 0; } /** * @name GetNextEventTime * @return Time of next event. */ [[nodiscard]] uint32 GetNextEventTime() const { return Empty() ? 0 : _eventMap.begin()->first; } /** * @name IsInPhase * @brief Returns wether event map is in specified phase or not. * @param phase Wanted phase. * @return True, if phase of event map contains specified phase. */ bool IsInPhase(uint8 phase) { return phase <= 8 && (!phase || _phase & (1 << (phase - 1))); } private: uint32 _time{0}; uint32 _phase{0}; uint32 _lastEvent{0}; EventStore _eventMap; }; template typename std::underlying_type::type AsUnderlyingType(E enumValue) { static_assert(std::is_enum::value, "AsUnderlyingType can only be used with enums"); return static_cast::type>(enumValue); } #endif