mirror of
https://github.com/mod-playerbots/azerothcore-wotlk.git
synced 2026-01-24 14:16:31 +00:00
refactor(Core/Game): restyle game lib with astyle (#3466)
This commit is contained in:
@@ -9,301 +9,304 @@
|
||||
#include "Log.h"
|
||||
#include "Creature.h"
|
||||
|
||||
namespace Movement{
|
||||
|
||||
Location MoveSpline::ComputePosition() const
|
||||
namespace Movement
|
||||
{
|
||||
ASSERT(Initialized());
|
||||
|
||||
float u = 1.f;
|
||||
int32 seg_time = spline.length(point_Idx, point_Idx+1);
|
||||
if (seg_time > 0)
|
||||
u = (time_passed - spline.length(point_Idx)) / (float)seg_time;
|
||||
Location c;
|
||||
c.orientation = initialOrientation;
|
||||
spline.evaluate_percent(point_Idx, u, c);
|
||||
|
||||
if (splineflags.animation)
|
||||
;// MoveSplineFlag::Animation disables falling or parabolic movement
|
||||
else if (splineflags.parabolic)
|
||||
computeParabolicElevation(c.z);
|
||||
else if (splineflags.falling)
|
||||
computeFallElevation(c.z);
|
||||
|
||||
if (splineflags.done && splineflags.isFacing())
|
||||
Location MoveSpline::ComputePosition() const
|
||||
{
|
||||
if (splineflags.final_angle)
|
||||
c.orientation = facing.angle;
|
||||
else if (splineflags.final_point)
|
||||
c.orientation = atan2(facing.f.y - c.y, facing.f.x - c.x);
|
||||
//nothing to do for MoveSplineFlag::Final_Target flag
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!splineflags.hasFlag(MoveSplineFlag::OrientationFixed | MoveSplineFlag::Falling))
|
||||
ASSERT(Initialized());
|
||||
|
||||
float u = 1.f;
|
||||
int32 seg_time = spline.length(point_Idx, point_Idx + 1);
|
||||
if (seg_time > 0)
|
||||
u = (time_passed - spline.length(point_Idx)) / (float)seg_time;
|
||||
Location c;
|
||||
c.orientation = initialOrientation;
|
||||
spline.evaluate_percent(point_Idx, u, c);
|
||||
|
||||
if (splineflags.animation)
|
||||
;// MoveSplineFlag::Animation disables falling or parabolic movement
|
||||
else if (splineflags.parabolic)
|
||||
computeParabolicElevation(c.z);
|
||||
else if (splineflags.falling)
|
||||
computeFallElevation(c.z);
|
||||
|
||||
if (splineflags.done && splineflags.isFacing())
|
||||
{
|
||||
Vector3 hermite;
|
||||
spline.evaluate_derivative(point_Idx, u, hermite);
|
||||
c.orientation = atan2(hermite.y, hermite.x);
|
||||
if (splineflags.final_angle)
|
||||
c.orientation = facing.angle;
|
||||
else if (splineflags.final_point)
|
||||
c.orientation = atan2(facing.f.y - c.y, facing.f.x - c.x);
|
||||
//nothing to do for MoveSplineFlag::Final_Target flag
|
||||
}
|
||||
|
||||
if (splineflags.orientationInversed)
|
||||
c.orientation = -c.orientation;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
void MoveSpline::computeParabolicElevation(float& el) const
|
||||
{
|
||||
if (time_passed > effect_start_time)
|
||||
{
|
||||
float t_passedf = MSToSec(time_passed - effect_start_time);
|
||||
float t_durationf = MSToSec(Duration() - effect_start_time); //client use not modified duration here
|
||||
|
||||
// -a*x*x + bx + c:
|
||||
//(dur * v3->z_acceleration * dt)/2 - (v3->z_acceleration * dt * dt)/2 + Z;
|
||||
el += (t_durationf - t_passedf) * 0.5f * vertical_acceleration * t_passedf;
|
||||
}
|
||||
}
|
||||
|
||||
void MoveSpline::computeFallElevation(float& el) const
|
||||
{
|
||||
float z_now = spline.getPoint(spline.first(), false).z - Movement::computeFallElevation(MSToSec(time_passed), false);
|
||||
float final_z = FinalDestination().z;
|
||||
el = std::max(z_now, final_z);
|
||||
}
|
||||
|
||||
inline uint32 computeDuration(float length, float velocity)
|
||||
{
|
||||
return SecToMS(length / velocity);
|
||||
}
|
||||
|
||||
struct FallInitializer
|
||||
{
|
||||
FallInitializer(float _start_elevation) : start_elevation(_start_elevation) {}
|
||||
float start_elevation;
|
||||
inline int32 operator()(Spline<int32>& s, int32 i)
|
||||
{
|
||||
return Movement::computeFallTime(start_elevation - s.getPoint(i+1, false).z, false) * 1000.f;
|
||||
}
|
||||
};
|
||||
|
||||
enum{
|
||||
minimal_duration = 1
|
||||
};
|
||||
|
||||
struct CommonInitializer
|
||||
{
|
||||
CommonInitializer(float _velocity) : velocityInv(1000.f/_velocity), time(minimal_duration) {}
|
||||
float velocityInv;
|
||||
int32 time;
|
||||
inline int32 operator()(Spline<int32>& s, int32 i)
|
||||
{
|
||||
time += (s.SegLength(i) * velocityInv);
|
||||
return time;
|
||||
}
|
||||
};
|
||||
|
||||
void MoveSpline::init_spline(const MoveSplineInitArgs& args)
|
||||
{
|
||||
const SplineBase::EvaluationMode modes[2] = {SplineBase::ModeLinear, SplineBase::ModeCatmullrom};
|
||||
if (args.flags.cyclic)
|
||||
{
|
||||
uint32 cyclic_point = 0;
|
||||
// MoveSplineFlag::Enter_Cycle support dropped
|
||||
//if (splineflags & SPLINEFLAG_ENTER_CYCLE)
|
||||
//cyclic_point = 1; // shouldn't be modified, came from client
|
||||
spline.init_cyclic_spline(&args.path[0], args.path.size(), modes[args.flags.isSmooth()], cyclic_point);
|
||||
}
|
||||
else
|
||||
{
|
||||
spline.init_spline(&args.path[0], args.path.size(), modes[args.flags.isSmooth()]);
|
||||
}
|
||||
|
||||
// init spline timestamps
|
||||
if (splineflags.falling)
|
||||
{
|
||||
FallInitializer init(spline.getPoint(spline.first(), false).z);
|
||||
spline.initLengths(init);
|
||||
}
|
||||
else
|
||||
{
|
||||
CommonInitializer init(args.velocity);
|
||||
spline.initLengths(init);
|
||||
}
|
||||
|
||||
// TODO: what to do in such cases? problem is in input data (all points are at same coords)
|
||||
if (spline.length() < minimal_duration)
|
||||
{
|
||||
//sLog->outError("MoveSpline::init_spline: zero length spline, wrong input data?"); // ZOMG! temp comment to avoid console spam from transports
|
||||
spline.set_length(spline.last(), spline.isCyclic() ? 1000 : 1);
|
||||
}
|
||||
point_Idx = spline.first();
|
||||
}
|
||||
|
||||
void MoveSpline::Initialize(MoveSplineInitArgs const& args)
|
||||
{
|
||||
splineflags = args.flags;
|
||||
facing = args.facing;
|
||||
m_Id = args.splineId;
|
||||
point_Idx_offset = args.path_Idx_offset;
|
||||
initialOrientation = args.initialOrientation;
|
||||
|
||||
time_passed = 0;
|
||||
vertical_acceleration = 0.f;
|
||||
effect_start_time = 0;
|
||||
|
||||
// Check if its a stop spline
|
||||
if (args.flags.done)
|
||||
{
|
||||
spline.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
init_spline(args);
|
||||
|
||||
// init parabolic / animation
|
||||
// spline initialized, duration known and i able to compute parabolic acceleration
|
||||
if (args.flags & (MoveSplineFlag::Parabolic | MoveSplineFlag::Animation))
|
||||
{
|
||||
effect_start_time = Duration() * args.time_perc;
|
||||
if (args.flags.parabolic && effect_start_time < Duration())
|
||||
else
|
||||
{
|
||||
float f_duration = MSToSec(Duration() - effect_start_time);
|
||||
vertical_acceleration = args.parabolic_amplitude * 8.f / (f_duration * f_duration);
|
||||
if (!splineflags.hasFlag(MoveSplineFlag::OrientationFixed | MoveSplineFlag::Falling))
|
||||
{
|
||||
Vector3 hermite;
|
||||
spline.evaluate_derivative(point_Idx, u, hermite);
|
||||
c.orientation = atan2(hermite.y, hermite.x);
|
||||
}
|
||||
|
||||
if (splineflags.orientationInversed)
|
||||
c.orientation = -c.orientation;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
void MoveSpline::computeParabolicElevation(float& el) const
|
||||
{
|
||||
if (time_passed > effect_start_time)
|
||||
{
|
||||
float t_passedf = MSToSec(time_passed - effect_start_time);
|
||||
float t_durationf = MSToSec(Duration() - effect_start_time); //client use not modified duration here
|
||||
|
||||
// -a*x*x + bx + c:
|
||||
//(dur * v3->z_acceleration * dt)/2 - (v3->z_acceleration * dt * dt)/2 + Z;
|
||||
el += (t_durationf - t_passedf) * 0.5f * vertical_acceleration * t_passedf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MoveSpline::MoveSpline() : m_Id(0), time_passed(0),
|
||||
vertical_acceleration(0.f), initialOrientation(0.f), effect_start_time(0), point_Idx(0), point_Idx_offset(0),
|
||||
onTransport(false)
|
||||
{
|
||||
splineflags.done = true;
|
||||
}
|
||||
void MoveSpline::computeFallElevation(float& el) const
|
||||
{
|
||||
float z_now = spline.getPoint(spline.first(), false).z - Movement::computeFallElevation(MSToSec(time_passed), false);
|
||||
float final_z = FinalDestination().z;
|
||||
el = std::max(z_now, final_z);
|
||||
}
|
||||
|
||||
/// ============================================================================================
|
||||
inline uint32 computeDuration(float length, float velocity)
|
||||
{
|
||||
return SecToMS(length / velocity);
|
||||
}
|
||||
|
||||
bool MoveSplineInitArgs::Validate(Unit* unit) const
|
||||
{
|
||||
struct FallInitializer
|
||||
{
|
||||
FallInitializer(float _start_elevation) : start_elevation(_start_elevation) {}
|
||||
float start_elevation;
|
||||
inline int32 operator()(Spline<int32>& s, int32 i)
|
||||
{
|
||||
return Movement::computeFallTime(start_elevation - s.getPoint(i + 1, false).z, false) * 1000.f;
|
||||
}
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
minimal_duration = 1
|
||||
};
|
||||
|
||||
struct CommonInitializer
|
||||
{
|
||||
CommonInitializer(float _velocity) : velocityInv(1000.f / _velocity), time(minimal_duration) {}
|
||||
float velocityInv;
|
||||
int32 time;
|
||||
inline int32 operator()(Spline<int32>& s, int32 i)
|
||||
{
|
||||
time += (s.SegLength(i) * velocityInv);
|
||||
return time;
|
||||
}
|
||||
};
|
||||
|
||||
void MoveSpline::init_spline(const MoveSplineInitArgs& args)
|
||||
{
|
||||
const SplineBase::EvaluationMode modes[2] = {SplineBase::ModeLinear, SplineBase::ModeCatmullrom};
|
||||
if (args.flags.cyclic)
|
||||
{
|
||||
uint32 cyclic_point = 0;
|
||||
// MoveSplineFlag::Enter_Cycle support dropped
|
||||
//if (splineflags & SPLINEFLAG_ENTER_CYCLE)
|
||||
//cyclic_point = 1; // shouldn't be modified, came from client
|
||||
spline.init_cyclic_spline(&args.path[0], args.path.size(), modes[args.flags.isSmooth()], cyclic_point);
|
||||
}
|
||||
else
|
||||
{
|
||||
spline.init_spline(&args.path[0], args.path.size(), modes[args.flags.isSmooth()]);
|
||||
}
|
||||
|
||||
// init spline timestamps
|
||||
if (splineflags.falling)
|
||||
{
|
||||
FallInitializer init(spline.getPoint(spline.first(), false).z);
|
||||
spline.initLengths(init);
|
||||
}
|
||||
else
|
||||
{
|
||||
CommonInitializer init(args.velocity);
|
||||
spline.initLengths(init);
|
||||
}
|
||||
|
||||
// TODO: what to do in such cases? problem is in input data (all points are at same coords)
|
||||
if (spline.length() < minimal_duration)
|
||||
{
|
||||
//sLog->outError("MoveSpline::init_spline: zero length spline, wrong input data?"); // ZOMG! temp comment to avoid console spam from transports
|
||||
spline.set_length(spline.last(), spline.isCyclic() ? 1000 : 1);
|
||||
}
|
||||
point_Idx = spline.first();
|
||||
}
|
||||
|
||||
void MoveSpline::Initialize(MoveSplineInitArgs const& args)
|
||||
{
|
||||
splineflags = args.flags;
|
||||
facing = args.facing;
|
||||
m_Id = args.splineId;
|
||||
point_Idx_offset = args.path_Idx_offset;
|
||||
initialOrientation = args.initialOrientation;
|
||||
|
||||
time_passed = 0;
|
||||
vertical_acceleration = 0.f;
|
||||
effect_start_time = 0;
|
||||
|
||||
// Check if its a stop spline
|
||||
if (args.flags.done)
|
||||
{
|
||||
spline.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
init_spline(args);
|
||||
|
||||
// init parabolic / animation
|
||||
// spline initialized, duration known and i able to compute parabolic acceleration
|
||||
if (args.flags & (MoveSplineFlag::Parabolic | MoveSplineFlag::Animation))
|
||||
{
|
||||
effect_start_time = Duration() * args.time_perc;
|
||||
if (args.flags.parabolic && effect_start_time < Duration())
|
||||
{
|
||||
float f_duration = MSToSec(Duration() - effect_start_time);
|
||||
vertical_acceleration = args.parabolic_amplitude * 8.f / (f_duration * f_duration);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MoveSpline::MoveSpline() : m_Id(0), time_passed(0),
|
||||
vertical_acceleration(0.f), initialOrientation(0.f), effect_start_time(0), point_Idx(0), point_Idx_offset(0),
|
||||
onTransport(false)
|
||||
{
|
||||
splineflags.done = true;
|
||||
}
|
||||
|
||||
/// ============================================================================================
|
||||
|
||||
bool MoveSplineInitArgs::Validate(Unit* unit) const
|
||||
{
|
||||
#define CHECK(exp) \
|
||||
if (!(exp))\
|
||||
{\
|
||||
sLog->outError("MoveSplineInitArgs::Validate: expression '%s' failed for GUID: %u Entry: %u", #exp, unit->GetTypeId() == TYPEID_PLAYER ? unit->GetGUIDLow() : unit->ToCreature()->GetDBTableGUIDLow(), unit->GetEntry());\
|
||||
return false;\
|
||||
}
|
||||
CHECK(path.size() > 1);
|
||||
CHECK(velocity > 0.01f);
|
||||
CHECK(time_perc >= 0.f && time_perc <= 1.f);
|
||||
//CHECK(_checkPathBounds());
|
||||
return true;
|
||||
CHECK(path.size() > 1);
|
||||
CHECK(velocity > 0.01f);
|
||||
CHECK(time_perc >= 0.f && time_perc <= 1.f);
|
||||
//CHECK(_checkPathBounds());
|
||||
return true;
|
||||
#undef CHECK
|
||||
}
|
||||
}
|
||||
|
||||
// MONSTER_MOVE packet format limitation for not CatmullRom movement:
|
||||
// each vertex offset packed into 11 bytes
|
||||
bool MoveSplineInitArgs::_checkPathBounds() const
|
||||
{
|
||||
if (!(flags & MoveSplineFlag::Mask_CatmullRom) && path.size() > 2)
|
||||
// MONSTER_MOVE packet format limitation for not CatmullRom movement:
|
||||
// each vertex offset packed into 11 bytes
|
||||
bool MoveSplineInitArgs::_checkPathBounds() const
|
||||
{
|
||||
enum{
|
||||
MAX_OFFSET = (1 << 11) / 2
|
||||
};
|
||||
Vector3 middle = (path.front()+path.back()) / 2;
|
||||
Vector3 offset;
|
||||
for (uint32 i = 1; i < path.size()-1; ++i)
|
||||
if (!(flags & MoveSplineFlag::Mask_CatmullRom) && path.size() > 2)
|
||||
{
|
||||
offset = path[i] - middle;
|
||||
if (fabs(offset.x) >= MAX_OFFSET || fabs(offset.y) >= MAX_OFFSET || fabs(offset.z) >= MAX_OFFSET)
|
||||
enum
|
||||
{
|
||||
sLog->outError("MoveSplineInitArgs::_checkPathBounds check failed");
|
||||
return false;
|
||||
MAX_OFFSET = (1 << 11) / 2
|
||||
};
|
||||
Vector3 middle = (path.front() + path.back()) / 2;
|
||||
Vector3 offset;
|
||||
for (uint32 i = 1; i < path.size() - 1; ++i)
|
||||
{
|
||||
offset = path[i] - middle;
|
||||
if (fabs(offset.x) >= MAX_OFFSET || fabs(offset.y) >= MAX_OFFSET || fabs(offset.z) >= MAX_OFFSET)
|
||||
{
|
||||
sLog->outError("MoveSplineInitArgs::_checkPathBounds check failed");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// ============================================================================================
|
||||
|
||||
MoveSpline::UpdateResult MoveSpline::_updateState(int32& ms_time_diff)
|
||||
{
|
||||
if (Finalized())
|
||||
{
|
||||
ms_time_diff = 0;
|
||||
return Result_Arrived;
|
||||
return true;
|
||||
}
|
||||
|
||||
UpdateResult result = Result_None;
|
||||
/// ============================================================================================
|
||||
|
||||
int32 minimal_diff = std::min(ms_time_diff, segment_time_elapsed());
|
||||
if (minimal_diff < 0)
|
||||
minimal_diff = 0;
|
||||
|
||||
ASSERT(minimal_diff >= 0);
|
||||
time_passed += minimal_diff;
|
||||
ms_time_diff -= minimal_diff;
|
||||
|
||||
if (time_passed >= next_timestamp())
|
||||
MoveSpline::UpdateResult MoveSpline::_updateState(int32& ms_time_diff)
|
||||
{
|
||||
++point_Idx;
|
||||
if (point_Idx < spline.last())
|
||||
if (Finalized())
|
||||
{
|
||||
result = Result_NextSegment;
|
||||
ms_time_diff = 0;
|
||||
return Result_Arrived;
|
||||
}
|
||||
else
|
||||
|
||||
UpdateResult result = Result_None;
|
||||
|
||||
int32 minimal_diff = std::min(ms_time_diff, segment_time_elapsed());
|
||||
if (minimal_diff < 0)
|
||||
minimal_diff = 0;
|
||||
|
||||
ASSERT(minimal_diff >= 0);
|
||||
time_passed += minimal_diff;
|
||||
ms_time_diff -= minimal_diff;
|
||||
|
||||
if (time_passed >= next_timestamp())
|
||||
{
|
||||
if (spline.isCyclic())
|
||||
++point_Idx;
|
||||
if (point_Idx < spline.last())
|
||||
{
|
||||
point_Idx = spline.first();
|
||||
time_passed = time_passed % Duration();
|
||||
result = Movement::MoveSpline::UpdateResult(Result_NextCycle | Result_JustArrived);
|
||||
result = Result_NextSegment;
|
||||
}
|
||||
else
|
||||
{
|
||||
_Finalize();
|
||||
ms_time_diff = 0;
|
||||
result = Movement::MoveSpline::UpdateResult(Result_Arrived | Result_JustArrived);
|
||||
if (spline.isCyclic())
|
||||
{
|
||||
point_Idx = spline.first();
|
||||
time_passed = time_passed % Duration();
|
||||
result = Movement::MoveSpline::UpdateResult(Result_NextCycle | Result_JustArrived);
|
||||
}
|
||||
else
|
||||
{
|
||||
_Finalize();
|
||||
ms_time_diff = 0;
|
||||
result = Movement::MoveSpline::UpdateResult(Result_Arrived | Result_JustArrived);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
std::string MoveSpline::ToString() const
|
||||
{
|
||||
std::stringstream str;
|
||||
str << "MoveSpline" << std::endl;
|
||||
str << "spline Id: " << GetId() << std::endl;
|
||||
str << "flags: " << splineflags.ToString() << std::endl;
|
||||
if (splineflags.final_angle)
|
||||
str << "facing angle: " << facing.angle;
|
||||
else if (splineflags.final_target)
|
||||
str << "facing target: " << facing.target;
|
||||
else if (splineflags.final_point)
|
||||
str << "facing point: " << facing.f.x << " " << facing.f.y << " " << facing.f.z;
|
||||
str << std::endl;
|
||||
str << "time passed: " << time_passed << std::endl;
|
||||
str << "total time: " << Duration() << std::endl;
|
||||
str << "spline point Id: " << point_Idx << std::endl;
|
||||
str << "path point Id: " << currentPathIdx() << std::endl;
|
||||
str << spline.ToString();
|
||||
return str.str();
|
||||
}
|
||||
|
||||
std::string MoveSpline::ToString() const
|
||||
{
|
||||
std::stringstream str;
|
||||
str << "MoveSpline" << std::endl;
|
||||
str << "spline Id: " << GetId() << std::endl;
|
||||
str << "flags: " << splineflags.ToString() << std::endl;
|
||||
if (splineflags.final_angle)
|
||||
str << "facing angle: " << facing.angle;
|
||||
else if (splineflags.final_target)
|
||||
str << "facing target: " << facing.target;
|
||||
else if (splineflags.final_point)
|
||||
str << "facing point: " << facing.f.x << " " << facing.f.y << " " << facing.f.z;
|
||||
str << std::endl;
|
||||
str << "time passed: " << time_passed << std::endl;
|
||||
str << "total time: " << Duration() << std::endl;
|
||||
str << "spline point Id: " << point_Idx << std::endl;
|
||||
str << "path point Id: " << currentPathIdx() << std::endl;
|
||||
str << spline.ToString();
|
||||
return str.str();
|
||||
}
|
||||
void MoveSpline::_Finalize()
|
||||
{
|
||||
splineflags.done = true;
|
||||
point_Idx = spline.last() - 1;
|
||||
time_passed = Duration();
|
||||
}
|
||||
|
||||
void MoveSpline::_Finalize()
|
||||
{
|
||||
splineflags.done = true;
|
||||
point_Idx = spline.last() - 1;
|
||||
time_passed = Duration();
|
||||
}
|
||||
|
||||
int32 MoveSpline::currentPathIdx() const
|
||||
{
|
||||
int32 point = point_Idx_offset + point_Idx - spline.first() + (int)Finalized();
|
||||
if (isCyclic())
|
||||
point = point % (spline.last()-spline.first());
|
||||
return point;
|
||||
}
|
||||
int32 MoveSpline::currentPathIdx() const
|
||||
{
|
||||
int32 point = point_Idx_offset + point_Idx - spline.first() + (int)Finalized();
|
||||
if (isCyclic())
|
||||
point = point % (spline.last() - spline.first());
|
||||
return point;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,7 +24,7 @@ namespace Movement
|
||||
enum eFlags
|
||||
{
|
||||
None = 0x00000000,
|
||||
// x00-xFF(first byte) used as animation Ids storage in pair with Animation flag
|
||||
// x00-xFF(first byte) used as animation Ids storage in pair with Animation flag
|
||||
Done = 0x00000100,
|
||||
Falling = 0x00000200, // Affects elevation computation, can't be combined with Parabolic flag
|
||||
No_Spline = 0x00000400,
|
||||
@@ -59,21 +59,21 @@ namespace Movement
|
||||
// CatmullRom interpolation mode used
|
||||
Mask_CatmullRom = Flying | Catmullrom,
|
||||
// Unused, not suported flags
|
||||
Mask_Unused = No_Spline|Enter_Cycle|Frozen|Unknown7|Unknown8|Unknown10|Unknown11|Unknown12|Unknown13
|
||||
Mask_Unused = No_Spline | Enter_Cycle | Frozen | Unknown7 | Unknown8 | Unknown10 | Unknown11 | Unknown12 | Unknown13
|
||||
};
|
||||
|
||||
inline uint32& raw() { return (uint32&)*this; }
|
||||
inline const uint32& raw() const { return (const uint32&)*this; }
|
||||
inline uint32& raw() { return (uint32&) * this; }
|
||||
inline const uint32& raw() const { return (const uint32&) * this; }
|
||||
|
||||
MoveSplineFlag() { raw() = 0; }
|
||||
MoveSplineFlag(uint32 f) { raw() = f; }
|
||||
MoveSplineFlag(const MoveSplineFlag& f) { raw() = f.raw(); }
|
||||
/* requried as of C++ 11 */
|
||||
#if __cplusplus >= 201103L
|
||||
#if __cplusplus >= 201103L
|
||||
MoveSplineFlag(MoveSplineFlag&&) = default;
|
||||
MoveSplineFlag& operator=(const MoveSplineFlag&) = default;
|
||||
MoveSplineFlag& operator=(MoveSplineFlag&&) = default;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Constant interface
|
||||
|
||||
|
||||
@@ -79,7 +79,7 @@ namespace Movement
|
||||
move_spline.onTransport = transport;
|
||||
|
||||
uint32 moveFlags = unit->m_movementInfo.GetMovementFlags();
|
||||
moveFlags |= (MOVEMENTFLAG_SPLINE_ENABLED|MOVEMENTFLAG_FORWARD);
|
||||
moveFlags |= (MOVEMENTFLAG_SPLINE_ENABLED | MOVEMENTFLAG_FORWARD);
|
||||
|
||||
if (moveFlags & MOVEMENTFLAG_ROOT)
|
||||
moveFlags &= ~MOVEMENTFLAG_MASK_MOVING;
|
||||
@@ -121,7 +121,7 @@ namespace Movement
|
||||
std::copy(move_spline._Spline().getPoints(false).begin(), move_spline._Spline().getPoints(false).end(), visualPoints->begin());
|
||||
|
||||
PacketBuilder::WriteMonsterMove(move_spline, data);
|
||||
unit->SendMessageToSet(&data,true);
|
||||
unit->SendMessageToSet(&data, true);
|
||||
|
||||
return move_spline.Duration();
|
||||
}
|
||||
|
||||
@@ -18,7 +18,8 @@ namespace Movement
|
||||
|
||||
union FacingInfo
|
||||
{
|
||||
struct {
|
||||
struct
|
||||
{
|
||||
float x, y, z;
|
||||
} f;
|
||||
uint64 target;
|
||||
|
||||
@@ -88,7 +88,7 @@ namespace Movement
|
||||
void WriteLinearPath(const Spline<int32>& spline, ByteBuffer& data)
|
||||
{
|
||||
uint32 last_idx = spline.getPointCount() - 3;
|
||||
const Vector3 * real_path = &spline.getPoint(1, true);
|
||||
const Vector3* real_path = &spline.getPoint(1, true);
|
||||
|
||||
data << last_idx;
|
||||
data << real_path[last_idx]; // destination
|
||||
@@ -115,7 +115,7 @@ namespace Movement
|
||||
void WriteCatmullRomCyclicPath(const Spline<int32>& spline, ByteBuffer& data, bool flying)
|
||||
{
|
||||
uint32 count = spline.getPointCount() - 3;
|
||||
data << uint32(count+1);
|
||||
data << uint32(count + 1);
|
||||
if (flying)
|
||||
{
|
||||
data << spline.getPoint(1, true); // fake point, client will erase it from the spline after first cycle done
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
* Copyright (C) 2008-2016 TrinityCore <http://www.trinitycore.org/>
|
||||
* Copyright (C) 2005-2009 MaNGOS <http://getmangos.com/>
|
||||
*/
|
||||
|
||||
|
||||
#ifndef TRINITYSERVER_PACKET_BUILDER_H
|
||||
#define TRINITYSERVER_PACKET_BUILDER_H
|
||||
|
||||
|
||||
@@ -17,8 +17,8 @@ namespace Movement
|
||||
float terminalVelocity = 60.148003f;
|
||||
float terminalSafefallVelocity = 7.0f;
|
||||
|
||||
const float terminal_length = float(terminalVelocity * terminalVelocity) / (2.0f * gravity);
|
||||
const float terminal_safeFall_length = (terminalSafefallVelocity * terminalSafefallVelocity) / (2.0f * gravity);
|
||||
const float terminal_length = float(terminalVelocity* terminalVelocity) / (2.0f * gravity);
|
||||
const float terminal_safeFall_length = (terminalSafefallVelocity* terminalSafefallVelocity) / (2.0f * gravity);
|
||||
const float terminal_fallTime = float(terminalVelocity / gravity); // the time that needed to reach terminalVelocity
|
||||
const float terminal_safeFall_fallTime = float(terminalSafefallVelocity / gravity); // the time that needed to reach terminalVelocity with safefall
|
||||
|
||||
@@ -64,8 +64,8 @@ namespace Movement
|
||||
if (t_passed > terminal_time)
|
||||
{
|
||||
result = termVel * (t_passed - terminal_time) +
|
||||
start_velocity * terminal_time +
|
||||
gravity * terminal_time * terminal_time*0.5f;
|
||||
start_velocity * terminal_time +
|
||||
gravity * terminal_time * terminal_time * 0.5f;
|
||||
}
|
||||
else
|
||||
result = t_passed * (start_velocity + t_passed * gravity * 0.5f);
|
||||
@@ -73,7 +73,7 @@ namespace Movement
|
||||
return result;
|
||||
}
|
||||
|
||||
#define STR(x) #x
|
||||
#define STR(x) #x
|
||||
|
||||
char const* g_MovementFlag_names[] =
|
||||
{
|
||||
@@ -165,7 +165,7 @@ namespace Movement
|
||||
};
|
||||
|
||||
template<class Flags, int N>
|
||||
void print_flags(Flags t, char const* (&names)[N], std::string& str)
|
||||
void print_flags(Flags t, char const * (&names)[N], std::string& str)
|
||||
{
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
|
||||
@@ -8,287 +8,288 @@
|
||||
#include <sstream>
|
||||
#include <G3D/Matrix4.h>
|
||||
|
||||
namespace Movement{
|
||||
|
||||
SplineBase::EvaluationMethtod SplineBase::evaluators[SplineBase::ModesEnd] =
|
||||
namespace Movement
|
||||
{
|
||||
&SplineBase::EvaluateLinear,
|
||||
&SplineBase::EvaluateCatmullRom,
|
||||
&SplineBase::EvaluateBezier3,
|
||||
&SplineBase::UninitializedSplineEvaluationMethod,
|
||||
};
|
||||
|
||||
SplineBase::EvaluationMethtod SplineBase::derivative_evaluators[SplineBase::ModesEnd] =
|
||||
{
|
||||
&SplineBase::EvaluateDerivativeLinear,
|
||||
&SplineBase::EvaluateDerivativeCatmullRom,
|
||||
&SplineBase::EvaluateDerivativeBezier3,
|
||||
&SplineBase::UninitializedSplineEvaluationMethod,
|
||||
};
|
||||
|
||||
SplineBase::SegLenghtMethtod SplineBase::seglengths[SplineBase::ModesEnd] =
|
||||
{
|
||||
&SplineBase::SegLengthLinear,
|
||||
&SplineBase::SegLengthCatmullRom,
|
||||
&SplineBase::SegLengthBezier3,
|
||||
&SplineBase::UninitializedSplineSegLenghtMethod,
|
||||
};
|
||||
|
||||
SplineBase::InitMethtod SplineBase::initializers[SplineBase::ModesEnd] =
|
||||
{
|
||||
//&SplineBase::InitLinear,
|
||||
&SplineBase::InitCatmullRom, // we should use catmullrom initializer even for linear mode! (client's internal structure limitation)
|
||||
&SplineBase::InitCatmullRom,
|
||||
&SplineBase::InitBezier3,
|
||||
&SplineBase::UninitializedSplineInitMethod,
|
||||
};
|
||||
|
||||
///////////
|
||||
|
||||
using G3D::Matrix4;
|
||||
static const Matrix4 s_catmullRomCoeffs(
|
||||
-0.5f, 1.5f, -1.5f, 0.5f,
|
||||
1.f, -2.5f, 2.f, -0.5f,
|
||||
-0.5f, 0.f, 0.5f, 0.f,
|
||||
0.f, 1.f, 0.f, 0.f);
|
||||
|
||||
static const Matrix4 s_Bezier3Coeffs(
|
||||
-1.f, 3.f, -3.f, 1.f,
|
||||
3.f, -6.f, 3.f, 0.f,
|
||||
-3.f, 3.f, 0.f, 0.f,
|
||||
1.f, 0.f, 0.f, 0.f);
|
||||
|
||||
/* classic view:
|
||||
inline void C_Evaluate(const Vector3 *vertice, float t, const float (&matrix)[4][4], Vector3 &position)
|
||||
{
|
||||
Vector3 tvec(t*t*t, t*t, t);
|
||||
int i = 0;
|
||||
double c;
|
||||
double x = 0, y = 0, z = 0;
|
||||
while ( i < 4 )
|
||||
SplineBase::EvaluationMethtod SplineBase::evaluators[SplineBase::ModesEnd] =
|
||||
{
|
||||
c = matrix[0][i]*tvec.x + matrix[1][i]*tvec.y + matrix[2][i]*tvec.z + matrix[3][i];
|
||||
&SplineBase::EvaluateLinear,
|
||||
&SplineBase::EvaluateCatmullRom,
|
||||
&SplineBase::EvaluateBezier3,
|
||||
&SplineBase::UninitializedSplineEvaluationMethod,
|
||||
};
|
||||
|
||||
x += c * vertice->x;
|
||||
y += c * vertice->y;
|
||||
z += c * vertice->z;
|
||||
SplineBase::EvaluationMethtod SplineBase::derivative_evaluators[SplineBase::ModesEnd] =
|
||||
{
|
||||
&SplineBase::EvaluateDerivativeLinear,
|
||||
&SplineBase::EvaluateDerivativeCatmullRom,
|
||||
&SplineBase::EvaluateDerivativeBezier3,
|
||||
&SplineBase::UninitializedSplineEvaluationMethod,
|
||||
};
|
||||
|
||||
++i;
|
||||
++vertice;
|
||||
SplineBase::SegLenghtMethtod SplineBase::seglengths[SplineBase::ModesEnd] =
|
||||
{
|
||||
&SplineBase::SegLengthLinear,
|
||||
&SplineBase::SegLengthCatmullRom,
|
||||
&SplineBase::SegLengthBezier3,
|
||||
&SplineBase::UninitializedSplineSegLenghtMethod,
|
||||
};
|
||||
|
||||
SplineBase::InitMethtod SplineBase::initializers[SplineBase::ModesEnd] =
|
||||
{
|
||||
//&SplineBase::InitLinear,
|
||||
&SplineBase::InitCatmullRom, // we should use catmullrom initializer even for linear mode! (client's internal structure limitation)
|
||||
&SplineBase::InitCatmullRom,
|
||||
&SplineBase::InitBezier3,
|
||||
&SplineBase::UninitializedSplineInitMethod,
|
||||
};
|
||||
|
||||
///////////
|
||||
|
||||
using G3D::Matrix4;
|
||||
static const Matrix4 s_catmullRomCoeffs(
|
||||
-0.5f, 1.5f, -1.5f, 0.5f,
|
||||
1.f, -2.5f, 2.f, -0.5f,
|
||||
-0.5f, 0.f, 0.5f, 0.f,
|
||||
0.f, 1.f, 0.f, 0.f);
|
||||
|
||||
static const Matrix4 s_Bezier3Coeffs(
|
||||
-1.f, 3.f, -3.f, 1.f,
|
||||
3.f, -6.f, 3.f, 0.f,
|
||||
-3.f, 3.f, 0.f, 0.f,
|
||||
1.f, 0.f, 0.f, 0.f);
|
||||
|
||||
/* classic view:
|
||||
inline void C_Evaluate(const Vector3 *vertice, float t, const float (&matrix)[4][4], Vector3 &position)
|
||||
{
|
||||
Vector3 tvec(t*t*t, t*t, t);
|
||||
int i = 0;
|
||||
double c;
|
||||
double x = 0, y = 0, z = 0;
|
||||
while ( i < 4 )
|
||||
{
|
||||
c = matrix[0][i]*tvec.x + matrix[1][i]*tvec.y + matrix[2][i]*tvec.z + matrix[3][i];
|
||||
|
||||
x += c * vertice->x;
|
||||
y += c * vertice->y;
|
||||
z += c * vertice->z;
|
||||
|
||||
++i;
|
||||
++vertice;
|
||||
}
|
||||
|
||||
position.x = x;
|
||||
position.y = y;
|
||||
position.z = z;
|
||||
}*/
|
||||
|
||||
inline void C_Evaluate(const Vector3* vertice, float t, const Matrix4& matr, Vector3& result)
|
||||
{
|
||||
Vector4 tvec(t * t * t, t * t, t, 1.f);
|
||||
Vector4 weights(tvec * matr);
|
||||
|
||||
result = vertice[0] * weights[0] + vertice[1] * weights[1]
|
||||
+ vertice[2] * weights[2] + vertice[3] * weights[3];
|
||||
}
|
||||
|
||||
position.x = x;
|
||||
position.y = y;
|
||||
position.z = z;
|
||||
}*/
|
||||
|
||||
inline void C_Evaluate(const Vector3 *vertice, float t, const Matrix4& matr, Vector3 &result)
|
||||
{
|
||||
Vector4 tvec(t*t*t, t*t, t, 1.f);
|
||||
Vector4 weights(tvec * matr);
|
||||
|
||||
result = vertice[0] * weights[0] + vertice[1] * weights[1]
|
||||
+ vertice[2] * weights[2] + vertice[3] * weights[3];
|
||||
}
|
||||
|
||||
inline void C_Evaluate_Derivative(const Vector3 *vertice, float t, const Matrix4& matr, Vector3 &result)
|
||||
{
|
||||
Vector4 tvec(3.f*t*t, 2.f*t, 1.f, 0.f);
|
||||
Vector4 weights(tvec * matr);
|
||||
|
||||
result = vertice[0] * weights[0] + vertice[1] * weights[1]
|
||||
+ vertice[2] * weights[2] + vertice[3] * weights[3];
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateLinear(index_type index, float u, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
result = points[index] + (points[index+1] - points[index]) * u;
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateCatmullRom( index_type index, float t, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate(&points[index - 1], t, s_catmullRomCoeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateBezier3(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate(&points[index], t, s_Bezier3Coeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeLinear(index_type index, float, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
result = points[index+1] - points[index];
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeCatmullRom(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate_Derivative(&points[index - 1], t, s_catmullRomCoeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeBezier3(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate_Derivative(&points[index], t, s_Bezier3Coeffs, result);
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthLinear(index_type index) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
return (points[index] - points[index+1]).length();
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthCatmullRom(index_type index) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
|
||||
Vector3 curPos, nextPos;
|
||||
const Vector3 * p = &points[index - 1];
|
||||
curPos = nextPos = p[1];
|
||||
|
||||
index_type i = 1;
|
||||
double length = 0;
|
||||
while (i <= STEPS_PER_SEGMENT)
|
||||
inline void C_Evaluate_Derivative(const Vector3* vertice, float t, const Matrix4& matr, Vector3& result)
|
||||
{
|
||||
C_Evaluate(p, float(i) / float(STEPS_PER_SEGMENT), s_catmullRomCoeffs, nextPos);
|
||||
length += (nextPos - curPos).length();
|
||||
Vector4 tvec(3.f * t * t, 2.f * t, 1.f, 0.f);
|
||||
Vector4 weights(tvec * matr);
|
||||
|
||||
result = vertice[0] * weights[0] + vertice[1] * weights[1]
|
||||
+ vertice[2] * weights[2] + vertice[3] * weights[3];
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateLinear(index_type index, float u, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
result = points[index] + (points[index + 1] - points[index]) * u;
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateCatmullRom( index_type index, float t, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate(&points[index - 1], t, s_catmullRomCoeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateBezier3(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate(&points[index], t, s_Bezier3Coeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeLinear(index_type index, float, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
result = points[index + 1] - points[index];
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeCatmullRom(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate_Derivative(&points[index - 1], t, s_catmullRomCoeffs, result);
|
||||
}
|
||||
|
||||
void SplineBase::EvaluateDerivativeBezier3(index_type index, float t, Vector3& result) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
C_Evaluate_Derivative(&points[index], t, s_Bezier3Coeffs, result);
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthLinear(index_type index) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
return (points[index] - points[index + 1]).length();
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthCatmullRom(index_type index) const
|
||||
{
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
|
||||
Vector3 curPos, nextPos;
|
||||
const Vector3* p = &points[index - 1];
|
||||
curPos = nextPos = p[1];
|
||||
|
||||
index_type i = 1;
|
||||
double length = 0;
|
||||
while (i <= STEPS_PER_SEGMENT)
|
||||
{
|
||||
C_Evaluate(p, float(i) / float(STEPS_PER_SEGMENT), s_catmullRomCoeffs, nextPos);
|
||||
length += (nextPos - curPos).length();
|
||||
curPos = nextPos;
|
||||
++i;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthBezier3(index_type index) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
|
||||
Vector3 curPos, nextPos;
|
||||
const Vector3* p = &points[index];
|
||||
|
||||
C_Evaluate(p, 0.f, s_Bezier3Coeffs, nextPos);
|
||||
curPos = nextPos;
|
||||
++i;
|
||||
|
||||
index_type i = 1;
|
||||
double length = 0;
|
||||
while (i <= STEPS_PER_SEGMENT)
|
||||
{
|
||||
C_Evaluate(p, float(i) / float(STEPS_PER_SEGMENT), s_Bezier3Coeffs, nextPos);
|
||||
length += (nextPos - curPos).length();
|
||||
curPos = nextPos;
|
||||
++i;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
|
||||
float SplineBase::SegLengthBezier3(index_type index) const
|
||||
{
|
||||
index *= 3u;
|
||||
ASSERT(index >= index_lo && index < index_hi);
|
||||
|
||||
Vector3 curPos, nextPos;
|
||||
const Vector3 * p = &points[index];
|
||||
|
||||
C_Evaluate(p, 0.f, s_Bezier3Coeffs, nextPos);
|
||||
curPos = nextPos;
|
||||
|
||||
index_type i = 1;
|
||||
double length = 0;
|
||||
while (i <= STEPS_PER_SEGMENT)
|
||||
void SplineBase::init_spline(const Vector3* controls, index_type count, EvaluationMode m)
|
||||
{
|
||||
C_Evaluate(p, float(i) / float(STEPS_PER_SEGMENT), s_Bezier3Coeffs, nextPos);
|
||||
length += (nextPos - curPos).length();
|
||||
curPos = nextPos;
|
||||
++i;
|
||||
m_mode = m;
|
||||
cyclic = false;
|
||||
|
||||
(this->*initializers[m_mode])(controls, count, cyclic, 0);
|
||||
}
|
||||
return length;
|
||||
}
|
||||
|
||||
void SplineBase::init_spline(const Vector3 * controls, index_type count, EvaluationMode m)
|
||||
{
|
||||
m_mode = m;
|
||||
cyclic = false;
|
||||
|
||||
(this->*initializers[m_mode])(controls, count, cyclic, 0);
|
||||
}
|
||||
|
||||
void SplineBase::init_cyclic_spline(const Vector3 * controls, index_type count, EvaluationMode m, index_type cyclic_point)
|
||||
{
|
||||
m_mode = m;
|
||||
cyclic = true;
|
||||
|
||||
(this->*initializers[m_mode])(controls, count, cyclic, cyclic_point);
|
||||
}
|
||||
|
||||
void SplineBase::InitLinear(const Vector3* controls, index_type count, bool cyclic, index_type cyclic_point)
|
||||
{
|
||||
ASSERT(count >= 2);
|
||||
const int real_size = count + 1;
|
||||
|
||||
points.resize(real_size);
|
||||
|
||||
memcpy(&points[0], controls, sizeof(Vector3) * count);
|
||||
|
||||
// first and last two indexes are space for special 'virtual points'
|
||||
// these points are required for proper C_Evaluate and C_Evaluate_Derivative methtod work
|
||||
if (cyclic)
|
||||
points[count] = controls[cyclic_point];
|
||||
else
|
||||
points[count] = controls[count-1];
|
||||
|
||||
index_lo = 0;
|
||||
index_hi = cyclic ? count : (count - 1);
|
||||
}
|
||||
|
||||
void SplineBase::InitCatmullRom(const Vector3* controls, index_type count, bool cyclic, index_type cyclic_point)
|
||||
{
|
||||
const int real_size = count + (cyclic ? (1+2) : (1+1));
|
||||
|
||||
points.resize(real_size);
|
||||
|
||||
int lo_index = 1;
|
||||
int high_index = lo_index + count - 1;
|
||||
|
||||
memcpy(&points[lo_index], controls, sizeof(Vector3) * count);
|
||||
|
||||
// first and last two indexes are space for special 'virtual points'
|
||||
// these points are required for proper C_Evaluate and C_Evaluate_Derivative methtod work
|
||||
if (cyclic)
|
||||
void SplineBase::init_cyclic_spline(const Vector3* controls, index_type count, EvaluationMode m, index_type cyclic_point)
|
||||
{
|
||||
if (cyclic_point == 0)
|
||||
points[0] = controls[count-1];
|
||||
m_mode = m;
|
||||
cyclic = true;
|
||||
|
||||
(this->*initializers[m_mode])(controls, count, cyclic, cyclic_point);
|
||||
}
|
||||
|
||||
void SplineBase::InitLinear(const Vector3* controls, index_type count, bool cyclic, index_type cyclic_point)
|
||||
{
|
||||
ASSERT(count >= 2);
|
||||
const int real_size = count + 1;
|
||||
|
||||
points.resize(real_size);
|
||||
|
||||
memcpy(&points[0], controls, sizeof(Vector3) * count);
|
||||
|
||||
// first and last two indexes are space for special 'virtual points'
|
||||
// these points are required for proper C_Evaluate and C_Evaluate_Derivative methtod work
|
||||
if (cyclic)
|
||||
points[count] = controls[cyclic_point];
|
||||
else
|
||||
points[0] = controls[0].lerp(controls[1], -1);
|
||||
points[count] = controls[count - 1];
|
||||
|
||||
points[high_index+1] = controls[cyclic_point];
|
||||
points[high_index+2] = controls[cyclic_point+1];
|
||||
index_lo = 0;
|
||||
index_hi = cyclic ? count : (count - 1);
|
||||
}
|
||||
else
|
||||
|
||||
void SplineBase::InitCatmullRom(const Vector3* controls, index_type count, bool cyclic, index_type cyclic_point)
|
||||
{
|
||||
points[0] = controls[0].lerp(controls[1], -1);
|
||||
points[high_index+1] = controls[count-1];
|
||||
const int real_size = count + (cyclic ? (1 + 2) : (1 + 1));
|
||||
|
||||
points.resize(real_size);
|
||||
|
||||
int lo_index = 1;
|
||||
int high_index = lo_index + count - 1;
|
||||
|
||||
memcpy(&points[lo_index], controls, sizeof(Vector3) * count);
|
||||
|
||||
// first and last two indexes are space for special 'virtual points'
|
||||
// these points are required for proper C_Evaluate and C_Evaluate_Derivative methtod work
|
||||
if (cyclic)
|
||||
{
|
||||
if (cyclic_point == 0)
|
||||
points[0] = controls[count - 1];
|
||||
else
|
||||
points[0] = controls[0].lerp(controls[1], -1);
|
||||
|
||||
points[high_index + 1] = controls[cyclic_point];
|
||||
points[high_index + 2] = controls[cyclic_point + 1];
|
||||
}
|
||||
else
|
||||
{
|
||||
points[0] = controls[0].lerp(controls[1], -1);
|
||||
points[high_index + 1] = controls[count - 1];
|
||||
}
|
||||
|
||||
index_lo = lo_index;
|
||||
index_hi = high_index + (cyclic ? 1 : 0);
|
||||
}
|
||||
|
||||
index_lo = lo_index;
|
||||
index_hi = high_index + (cyclic ? 1 : 0);
|
||||
}
|
||||
void SplineBase::InitBezier3(const Vector3* controls, index_type count, bool /*cyclic*/, index_type /*cyclic_point*/)
|
||||
{
|
||||
index_type c = count / 3u * 3u;
|
||||
index_type t = c / 3u;
|
||||
|
||||
void SplineBase::InitBezier3(const Vector3* controls, index_type count, bool /*cyclic*/, index_type /*cyclic_point*/)
|
||||
{
|
||||
index_type c = count / 3u * 3u;
|
||||
index_type t = c / 3u;
|
||||
points.resize(c);
|
||||
memcpy(&points[0], controls, sizeof(Vector3) * c);
|
||||
|
||||
points.resize(c);
|
||||
memcpy(&points[0], controls, sizeof(Vector3) * c);
|
||||
index_lo = 0;
|
||||
index_hi = t - 1;
|
||||
//mov_assert(points.size() % 3 == 0);
|
||||
}
|
||||
|
||||
index_lo = 0;
|
||||
index_hi = t-1;
|
||||
//mov_assert(points.size() % 3 == 0);
|
||||
}
|
||||
void SplineBase::clear()
|
||||
{
|
||||
index_lo = 0;
|
||||
index_hi = 0;
|
||||
points.clear();
|
||||
pointsVisual.clear();
|
||||
}
|
||||
|
||||
void SplineBase::clear()
|
||||
{
|
||||
index_lo = 0;
|
||||
index_hi = 0;
|
||||
points.clear();
|
||||
pointsVisual.clear();
|
||||
}
|
||||
std::string SplineBase::ToString() const
|
||||
{
|
||||
std::stringstream str;
|
||||
const char* mode_str[ModesEnd] = {"Linear", "CatmullRom", "Bezier3", "Uninitialized"};
|
||||
|
||||
std::string SplineBase::ToString() const
|
||||
{
|
||||
std::stringstream str;
|
||||
const char * mode_str[ModesEnd] = {"Linear", "CatmullRom", "Bezier3", "Uninitialized"};
|
||||
index_type count = this->points.size();
|
||||
str << "mode: " << mode_str[mode()] << std::endl;
|
||||
str << "points count: " << count << std::endl;
|
||||
for (index_type i = 0; i < count; ++i)
|
||||
str << "point " << i << " : " << points[i].toString() << std::endl;
|
||||
|
||||
index_type count = this->points.size();
|
||||
str << "mode: " << mode_str[mode()] << std::endl;
|
||||
str << "points count: " << count << std::endl;
|
||||
for (index_type i = 0; i < count; ++i)
|
||||
str << "point " << i << " : " << points[i].toString() << std::endl;
|
||||
|
||||
return str.str();
|
||||
}
|
||||
return str.str();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -11,192 +11,194 @@
|
||||
#include <G3D/Vector3.h>
|
||||
#include <limits>
|
||||
|
||||
namespace Movement {
|
||||
|
||||
class SplineBase
|
||||
namespace Movement
|
||||
{
|
||||
public:
|
||||
typedef int index_type;
|
||||
typedef std::vector<Vector3> ControlArray;
|
||||
|
||||
enum EvaluationMode
|
||||
class SplineBase
|
||||
{
|
||||
ModeLinear,
|
||||
ModeCatmullrom,
|
||||
ModeBezier3_Unused,
|
||||
UninitializedMode,
|
||||
ModesEnd
|
||||
};
|
||||
public:
|
||||
typedef int index_type;
|
||||
typedef std::vector<Vector3> ControlArray;
|
||||
|
||||
protected:
|
||||
ControlArray points;
|
||||
ControlArray pointsVisual;
|
||||
|
||||
index_type index_lo;
|
||||
index_type index_hi;
|
||||
|
||||
uint8 m_mode;
|
||||
bool cyclic;
|
||||
|
||||
enum{
|
||||
// could be modified, affects segment length evaluation precision
|
||||
// lesser value saves more performance in cost of lover precision
|
||||
// minimal value is 1
|
||||
// client's value is 20, blizzs use 2-3 steps to compute length
|
||||
STEPS_PER_SEGMENT = 3
|
||||
};
|
||||
static_assert(STEPS_PER_SEGMENT > 0, "shouldn't be lesser than 1");
|
||||
|
||||
protected:
|
||||
void EvaluateLinear(index_type, float, Vector3&) const;
|
||||
void EvaluateCatmullRom(index_type, float, Vector3&) const;
|
||||
void EvaluateBezier3(index_type, float, Vector3&) const;
|
||||
typedef void (SplineBase::*EvaluationMethtod)(index_type, float, Vector3&) const;
|
||||
static EvaluationMethtod evaluators[ModesEnd];
|
||||
|
||||
void EvaluateDerivativeLinear(index_type, float, Vector3&) const;
|
||||
void EvaluateDerivativeCatmullRom(index_type, float, Vector3&) const;
|
||||
void EvaluateDerivativeBezier3(index_type, float, Vector3&) const;
|
||||
static EvaluationMethtod derivative_evaluators[ModesEnd];
|
||||
|
||||
float SegLengthLinear(index_type) const;
|
||||
float SegLengthCatmullRom(index_type) const;
|
||||
float SegLengthBezier3(index_type) const;
|
||||
typedef float (SplineBase::*SegLenghtMethtod)(index_type) const;
|
||||
static SegLenghtMethtod seglengths[ModesEnd];
|
||||
|
||||
void InitLinear(const Vector3*, index_type, bool, index_type);
|
||||
void InitCatmullRom(const Vector3*, index_type, bool, index_type);
|
||||
void InitBezier3(const Vector3*, index_type, bool, index_type);
|
||||
typedef void (SplineBase::*InitMethtod)(const Vector3*, index_type, bool, index_type);
|
||||
static InitMethtod initializers[ModesEnd];
|
||||
|
||||
void UninitializedSplineEvaluationMethod(index_type, float, Vector3&) const { ABORT(); }
|
||||
float UninitializedSplineSegLenghtMethod(index_type) const { ABORT(); }
|
||||
void UninitializedSplineInitMethod(Vector3 const*, index_type, bool, index_type) { ABORT(); }
|
||||
|
||||
public:
|
||||
|
||||
explicit SplineBase() : index_lo(0), index_hi(0), m_mode(UninitializedMode), cyclic(false) {}
|
||||
|
||||
/** Caclulates the position for given segment Idx, and percent of segment length t
|
||||
@param t - percent of segment length, assumes that t in range [0, 1]
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
*/
|
||||
void evaluate_percent(index_type Idx, float u, Vector3& c) const {(this->*evaluators[m_mode])(Idx, u,c);}
|
||||
|
||||
/** Caclulates derivation in index Idx, and percent of segment length t
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
@param t - percent of spline segment length, assumes that t in range [0, 1]
|
||||
*/
|
||||
void evaluate_derivative(index_type Idx, float u, Vector3& hermite) const {(this->*derivative_evaluators[m_mode])(Idx, u,hermite);}
|
||||
|
||||
/** Bounds for spline indexes. All indexes should be in range [first, last). */
|
||||
index_type first() const { return index_lo;}
|
||||
index_type last() const { return index_hi;}
|
||||
|
||||
bool empty() const { return index_lo == index_hi;}
|
||||
EvaluationMode mode() const { return (EvaluationMode)m_mode;}
|
||||
bool isCyclic() const { return cyclic;}
|
||||
|
||||
// Xinef: DO NOT USE EXCEPT FOR SPLINE INITIALIZATION!!!!!!
|
||||
const ControlArray* allocateVisualPoints() const { return &pointsVisual; }
|
||||
const ControlArray& getPoints(bool visual) const { return visual ? pointsVisual : points;}
|
||||
index_type getPointCount() const { return points.size();}
|
||||
const Vector3& getPoint(index_type i, bool visual) const { return visual ? pointsVisual[i] : points[i];}
|
||||
|
||||
/** Initializes spline. Don't call other methods while spline not initialized. */
|
||||
void init_spline(const Vector3 * controls, index_type count, EvaluationMode m);
|
||||
void init_cyclic_spline(const Vector3 * controls, index_type count, EvaluationMode m, index_type cyclic_point);
|
||||
|
||||
/** As i can see there are a lot of ways how spline can be initialized
|
||||
would be no harm to have some custom initializers. */
|
||||
template<class Init> inline void init_spline_custom(Init& initializer)
|
||||
{
|
||||
initializer(m_mode, cyclic, points, index_lo, index_hi);
|
||||
}
|
||||
|
||||
void clear();
|
||||
|
||||
/** Calculates distance between [i; i+1] points, assumes that index i is in bounds. */
|
||||
float SegLength(index_type i) const { return (this->*seglengths[m_mode])(i);}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
template<typename length_type>
|
||||
class Spline : public SplineBase
|
||||
{
|
||||
public:
|
||||
typedef length_type LengthType;
|
||||
typedef std::vector<length_type> LengthArray;
|
||||
protected:
|
||||
|
||||
LengthArray lengths;
|
||||
|
||||
index_type computeIndexInBounds(length_type length) const;
|
||||
public:
|
||||
|
||||
explicit Spline(){}
|
||||
|
||||
/** Calculates the position for given t
|
||||
@param t - percent of spline's length, assumes that t in range [0, 1]. */
|
||||
void evaluate_percent(float t, Vector3 & c) const;
|
||||
|
||||
/** Calculates derivation for given t
|
||||
@param t - percent of spline's length, assumes that t in range [0, 1]. */
|
||||
void evaluate_derivative(float t, Vector3& hermite) const;
|
||||
|
||||
/** Calculates the position for given segment Idx, and percent of segment length t
|
||||
@param t = partial_segment_length / whole_segment_length
|
||||
@param Idx - spline segment index, should be in range [first, last). */
|
||||
void evaluate_percent(index_type Idx, float u, Vector3& c) const { SplineBase::evaluate_percent(Idx, u,c);}
|
||||
|
||||
/** Caclulates derivation for index Idx, and percent of segment length t
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
@param t - percent of spline segment length, assumes that t in range [0, 1]. */
|
||||
void evaluate_derivative(index_type Idx, float u, Vector3& c) const { SplineBase::evaluate_derivative(Idx, u,c);}
|
||||
|
||||
// Assumes that t in range [0, 1]
|
||||
index_type computeIndexInBounds(float t) const;
|
||||
void computeIndex(float t, index_type& out_idx, float& out_u) const;
|
||||
|
||||
/** Initializes spline. Don't call other methods while spline not initialized. */
|
||||
void init_spline(const Vector3 * controls, index_type count, EvaluationMode m) { SplineBase::init_spline(controls, count, m);}
|
||||
void init_cyclic_spline(const Vector3 * controls, index_type count, EvaluationMode m, index_type cyclic_point) { SplineBase::init_cyclic_spline(controls, count, m,cyclic_point);}
|
||||
|
||||
/** Initializes lengths with SplineBase::SegLength method. */
|
||||
void initLengths();
|
||||
|
||||
/** Initializes lengths in some custom way
|
||||
Note that value returned by cacher must be greater or equal to previous value. */
|
||||
template<class T> inline void initLengths(T& cacher)
|
||||
{
|
||||
index_type i = index_lo;
|
||||
lengths.resize(index_hi+1);
|
||||
length_type prev_length = 0, new_length = 0;
|
||||
while (i < index_hi)
|
||||
enum EvaluationMode
|
||||
{
|
||||
new_length = cacher(*this, i);
|
||||
// length overflowed, assign to max positive value
|
||||
if (new_length < 0)
|
||||
new_length = std::numeric_limits<length_type>::max();
|
||||
lengths[++i] = new_length;
|
||||
ModeLinear,
|
||||
ModeCatmullrom,
|
||||
ModeBezier3_Unused,
|
||||
UninitializedMode,
|
||||
ModesEnd
|
||||
};
|
||||
|
||||
ASSERT(prev_length <= new_length);
|
||||
prev_length = new_length;
|
||||
protected:
|
||||
ControlArray points;
|
||||
ControlArray pointsVisual;
|
||||
|
||||
index_type index_lo;
|
||||
index_type index_hi;
|
||||
|
||||
uint8 m_mode;
|
||||
bool cyclic;
|
||||
|
||||
enum
|
||||
{
|
||||
// could be modified, affects segment length evaluation precision
|
||||
// lesser value saves more performance in cost of lover precision
|
||||
// minimal value is 1
|
||||
// client's value is 20, blizzs use 2-3 steps to compute length
|
||||
STEPS_PER_SEGMENT = 3
|
||||
};
|
||||
static_assert(STEPS_PER_SEGMENT > 0, "shouldn't be lesser than 1");
|
||||
|
||||
protected:
|
||||
void EvaluateLinear(index_type, float, Vector3&) const;
|
||||
void EvaluateCatmullRom(index_type, float, Vector3&) const;
|
||||
void EvaluateBezier3(index_type, float, Vector3&) const;
|
||||
typedef void (SplineBase::*EvaluationMethtod)(index_type, float, Vector3&) const;
|
||||
static EvaluationMethtod evaluators[ModesEnd];
|
||||
|
||||
void EvaluateDerivativeLinear(index_type, float, Vector3&) const;
|
||||
void EvaluateDerivativeCatmullRom(index_type, float, Vector3&) const;
|
||||
void EvaluateDerivativeBezier3(index_type, float, Vector3&) const;
|
||||
static EvaluationMethtod derivative_evaluators[ModesEnd];
|
||||
|
||||
float SegLengthLinear(index_type) const;
|
||||
float SegLengthCatmullRom(index_type) const;
|
||||
float SegLengthBezier3(index_type) const;
|
||||
typedef float (SplineBase::*SegLenghtMethtod)(index_type) const;
|
||||
static SegLenghtMethtod seglengths[ModesEnd];
|
||||
|
||||
void InitLinear(const Vector3*, index_type, bool, index_type);
|
||||
void InitCatmullRom(const Vector3*, index_type, bool, index_type);
|
||||
void InitBezier3(const Vector3*, index_type, bool, index_type);
|
||||
typedef void (SplineBase::*InitMethtod)(const Vector3*, index_type, bool, index_type);
|
||||
static InitMethtod initializers[ModesEnd];
|
||||
|
||||
void UninitializedSplineEvaluationMethod(index_type, float, Vector3&) const { ABORT(); }
|
||||
float UninitializedSplineSegLenghtMethod(index_type) const { ABORT(); }
|
||||
void UninitializedSplineInitMethod(Vector3 const*, index_type, bool, index_type) { ABORT(); }
|
||||
|
||||
public:
|
||||
|
||||
explicit SplineBase() : index_lo(0), index_hi(0), m_mode(UninitializedMode), cyclic(false) {}
|
||||
|
||||
/** Caclulates the position for given segment Idx, and percent of segment length t
|
||||
@param t - percent of segment length, assumes that t in range [0, 1]
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
*/
|
||||
void evaluate_percent(index_type Idx, float u, Vector3& c) const {(this->*evaluators[m_mode])(Idx, u, c);}
|
||||
|
||||
/** Caclulates derivation in index Idx, and percent of segment length t
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
@param t - percent of spline segment length, assumes that t in range [0, 1]
|
||||
*/
|
||||
void evaluate_derivative(index_type Idx, float u, Vector3& hermite) const {(this->*derivative_evaluators[m_mode])(Idx, u, hermite);}
|
||||
|
||||
/** Bounds for spline indexes. All indexes should be in range [first, last). */
|
||||
index_type first() const { return index_lo;}
|
||||
index_type last() const { return index_hi;}
|
||||
|
||||
bool empty() const { return index_lo == index_hi;}
|
||||
EvaluationMode mode() const { return (EvaluationMode)m_mode;}
|
||||
bool isCyclic() const { return cyclic;}
|
||||
|
||||
// Xinef: DO NOT USE EXCEPT FOR SPLINE INITIALIZATION!!!!!!
|
||||
const ControlArray* allocateVisualPoints() const { return &pointsVisual; }
|
||||
const ControlArray& getPoints(bool visual) const { return visual ? pointsVisual : points;}
|
||||
index_type getPointCount() const { return points.size();}
|
||||
const Vector3& getPoint(index_type i, bool visual) const { return visual ? pointsVisual[i] : points[i];}
|
||||
|
||||
/** Initializes spline. Don't call other methods while spline not initialized. */
|
||||
void init_spline(const Vector3* controls, index_type count, EvaluationMode m);
|
||||
void init_cyclic_spline(const Vector3* controls, index_type count, EvaluationMode m, index_type cyclic_point);
|
||||
|
||||
/** As i can see there are a lot of ways how spline can be initialized
|
||||
would be no harm to have some custom initializers. */
|
||||
template<class Init> inline void init_spline_custom(Init& initializer)
|
||||
{
|
||||
initializer(m_mode, cyclic, points, index_lo, index_hi);
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns length of the whole spline. */
|
||||
length_type length() const { return lengths[index_hi];}
|
||||
/** Returns length between given nodes. */
|
||||
length_type length(index_type first, index_type last) const { return lengths[last]-lengths[first];}
|
||||
length_type length(index_type Idx) const { return lengths[Idx];}
|
||||
void clear();
|
||||
|
||||
void set_length(index_type i, length_type length) { lengths[i] = length;}
|
||||
void clear();
|
||||
};
|
||||
/** Calculates distance between [i; i+1] points, assumes that index i is in bounds. */
|
||||
float SegLength(index_type i) const { return (this->*seglengths[m_mode])(i);}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
template<typename length_type>
|
||||
class Spline : public SplineBase
|
||||
{
|
||||
public:
|
||||
typedef length_type LengthType;
|
||||
typedef std::vector<length_type> LengthArray;
|
||||
protected:
|
||||
|
||||
LengthArray lengths;
|
||||
|
||||
index_type computeIndexInBounds(length_type length) const;
|
||||
public:
|
||||
|
||||
explicit Spline() {}
|
||||
|
||||
/** Calculates the position for given t
|
||||
@param t - percent of spline's length, assumes that t in range [0, 1]. */
|
||||
void evaluate_percent(float t, Vector3& c) const;
|
||||
|
||||
/** Calculates derivation for given t
|
||||
@param t - percent of spline's length, assumes that t in range [0, 1]. */
|
||||
void evaluate_derivative(float t, Vector3& hermite) const;
|
||||
|
||||
/** Calculates the position for given segment Idx, and percent of segment length t
|
||||
@param t = partial_segment_length / whole_segment_length
|
||||
@param Idx - spline segment index, should be in range [first, last). */
|
||||
void evaluate_percent(index_type Idx, float u, Vector3& c) const { SplineBase::evaluate_percent(Idx, u, c);}
|
||||
|
||||
/** Caclulates derivation for index Idx, and percent of segment length t
|
||||
@param Idx - spline segment index, should be in range [first, last)
|
||||
@param t - percent of spline segment length, assumes that t in range [0, 1]. */
|
||||
void evaluate_derivative(index_type Idx, float u, Vector3& c) const { SplineBase::evaluate_derivative(Idx, u, c);}
|
||||
|
||||
// Assumes that t in range [0, 1]
|
||||
index_type computeIndexInBounds(float t) const;
|
||||
void computeIndex(float t, index_type& out_idx, float& out_u) const;
|
||||
|
||||
/** Initializes spline. Don't call other methods while spline not initialized. */
|
||||
void init_spline(const Vector3* controls, index_type count, EvaluationMode m) { SplineBase::init_spline(controls, count, m);}
|
||||
void init_cyclic_spline(const Vector3* controls, index_type count, EvaluationMode m, index_type cyclic_point) { SplineBase::init_cyclic_spline(controls, count, m, cyclic_point);}
|
||||
|
||||
/** Initializes lengths with SplineBase::SegLength method. */
|
||||
void initLengths();
|
||||
|
||||
/** Initializes lengths in some custom way
|
||||
Note that value returned by cacher must be greater or equal to previous value. */
|
||||
template<class T> inline void initLengths(T& cacher)
|
||||
{
|
||||
index_type i = index_lo;
|
||||
lengths.resize(index_hi + 1);
|
||||
length_type prev_length = 0, new_length = 0;
|
||||
while (i < index_hi)
|
||||
{
|
||||
new_length = cacher(*this, i);
|
||||
// length overflowed, assign to max positive value
|
||||
if (new_length < 0)
|
||||
new_length = std::numeric_limits<length_type>::max();
|
||||
lengths[++i] = new_length;
|
||||
|
||||
ASSERT(prev_length <= new_length);
|
||||
prev_length = new_length;
|
||||
}
|
||||
}
|
||||
|
||||
/** Returns length of the whole spline. */
|
||||
length_type length() const { return lengths[index_hi];}
|
||||
/** Returns length between given nodes. */
|
||||
length_type length(index_type first, index_type last) const { return lengths[last] - lengths[first];}
|
||||
length_type length(index_type Idx) const { return lengths[Idx];}
|
||||
|
||||
void set_length(index_type i, length_type length) { lengths[i] = length;}
|
||||
void clear();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
@@ -6,80 +6,80 @@
|
||||
|
||||
namespace Movement
|
||||
{
|
||||
template<typename length_type> void Spline<length_type>::evaluate_percent( float t, Vector3 & c ) const
|
||||
{
|
||||
index_type Index;
|
||||
float u;
|
||||
computeIndex(t, Index, u);
|
||||
evaluate_percent(Index, u, c);
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::evaluate_derivative(float t, Vector3& hermite) const
|
||||
{
|
||||
index_type Index;
|
||||
float u;
|
||||
computeIndex(t, Index, u);
|
||||
evaluate_derivative(Index, u, hermite);
|
||||
}
|
||||
|
||||
template<typename length_type> SplineBase::index_type Spline<length_type>::computeIndexInBounds(length_type length_) const
|
||||
{
|
||||
// Temporary disabled: causes infinite loop with t = 1.f
|
||||
/*
|
||||
index_type hi = index_hi;
|
||||
index_type lo = index_lo;
|
||||
|
||||
index_type i = lo + (float)(hi - lo) * t;
|
||||
|
||||
while ((lengths[i] > length) || (lengths[i + 1] <= length))
|
||||
template<typename length_type> void Spline<length_type>::evaluate_percent( float t, Vector3& c ) const
|
||||
{
|
||||
if (lengths[i] > length)
|
||||
hi = i - 1; // too big
|
||||
else if (lengths[i + 1] <= length)
|
||||
lo = i + 1; // too small
|
||||
|
||||
i = (hi + lo) / 2;
|
||||
}*/
|
||||
|
||||
index_type i = index_lo;
|
||||
index_type N = index_hi;
|
||||
while (i+1 < N && lengths[i+1] < length_)
|
||||
++i;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::computeIndex(float t, index_type& index, float& u) const
|
||||
{
|
||||
ASSERT(t >= 0.f && t <= 1.f);
|
||||
length_type length_ = t * length();
|
||||
index = computeIndexInBounds(length_);
|
||||
ASSERT(index < index_hi);
|
||||
u = (length_ - length(index)) / (float)length(index, index+1);
|
||||
}
|
||||
|
||||
template<typename length_type> SplineBase::index_type Spline<length_type>::computeIndexInBounds( float t ) const
|
||||
{
|
||||
ASSERT(t >= 0.f && t <= 1.f);
|
||||
return computeIndexInBounds(t * length());
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::initLengths()
|
||||
{
|
||||
index_type i = index_lo;
|
||||
length_type length = 0;
|
||||
lengths.resize(index_hi+1);
|
||||
while (i < index_hi)
|
||||
{
|
||||
length += SegLength(i);
|
||||
lengths[++i] = length;
|
||||
index_type Index;
|
||||
float u;
|
||||
computeIndex(t, Index, u);
|
||||
evaluate_percent(Index, u, c);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::clear()
|
||||
{
|
||||
SplineBase::clear();
|
||||
lengths.clear();
|
||||
}
|
||||
template<typename length_type> void Spline<length_type>::evaluate_derivative(float t, Vector3& hermite) const
|
||||
{
|
||||
index_type Index;
|
||||
float u;
|
||||
computeIndex(t, Index, u);
|
||||
evaluate_derivative(Index, u, hermite);
|
||||
}
|
||||
|
||||
template<typename length_type> SplineBase::index_type Spline<length_type>::computeIndexInBounds(length_type length_) const
|
||||
{
|
||||
// Temporary disabled: causes infinite loop with t = 1.f
|
||||
/*
|
||||
index_type hi = index_hi;
|
||||
index_type lo = index_lo;
|
||||
|
||||
index_type i = lo + (float)(hi - lo) * t;
|
||||
|
||||
while ((lengths[i] > length) || (lengths[i + 1] <= length))
|
||||
{
|
||||
if (lengths[i] > length)
|
||||
hi = i - 1; // too big
|
||||
else if (lengths[i + 1] <= length)
|
||||
lo = i + 1; // too small
|
||||
|
||||
i = (hi + lo) / 2;
|
||||
}*/
|
||||
|
||||
index_type i = index_lo;
|
||||
index_type N = index_hi;
|
||||
while (i + 1 < N && lengths[i + 1] < length_)
|
||||
++i;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::computeIndex(float t, index_type& index, float& u) const
|
||||
{
|
||||
ASSERT(t >= 0.f && t <= 1.f);
|
||||
length_type length_ = t * length();
|
||||
index = computeIndexInBounds(length_);
|
||||
ASSERT(index < index_hi);
|
||||
u = (length_ - length(index)) / (float)length(index, index + 1);
|
||||
}
|
||||
|
||||
template<typename length_type> SplineBase::index_type Spline<length_type>::computeIndexInBounds( float t ) const
|
||||
{
|
||||
ASSERT(t >= 0.f && t <= 1.f);
|
||||
return computeIndexInBounds(t * length());
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::initLengths()
|
||||
{
|
||||
index_type i = index_lo;
|
||||
length_type length = 0;
|
||||
lengths.resize(index_hi + 1);
|
||||
while (i < index_hi)
|
||||
{
|
||||
length += SegLength(i);
|
||||
lengths[++i] = length;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename length_type> void Spline<length_type>::clear()
|
||||
{
|
||||
SplineBase::clear();
|
||||
lengths.clear();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user