fix(Core/Pathfinding): Creatures regen health, spells LOD (#4509)

This commit is contained in:
Footman
2021-02-10 02:37:05 +03:00
committed by GitHub
parent 98a61b71e5
commit 522eb9a7e4
12 changed files with 132 additions and 115 deletions

View File

@@ -12,10 +12,9 @@
#include "Log.h"
#include "DisableMgr.h"
#include "DetourCommon.h"
#include "DetourExtended.h"
#include "Geometry.h"
////////////////// PathGenerator //////////////////
////////////////// PathGenerator //////////////////
PathGenerator::PathGenerator(WorldObject const* owner) :
_polyLength(0), _type(PATHFIND_BLANK), _useStraightPath(false), _forceDestination(false),
_slopeCheck(false), _pointPathLimit(MAX_POINT_PATH_LENGTH), _useRaycast(false),
@@ -124,8 +123,8 @@ dtPolyRef PathGenerator::GetPolyByLocation(float const* point, float* distance)
// we don't have it in our old path
// try to get it by findNearestPoly()
// first try with low search box
float extents[VERTEX_SIZE] = {3.0f, 5.0f, 3.0f}; // bounds of poly search area
float closestPoint[VERTEX_SIZE] = {0.0f, 0.0f, 0.0f};
float extents[VERTEX_SIZE] = { 3.0f, 5.0f, 3.0f }; // bounds of poly search area
float closestPoint[VERTEX_SIZE] = { 0.0f, 0.0f, 0.0f };
if (dtStatusSucceed(_navMeshQuery->findNearestPoly(point, extents, &_filter, &polyRef, closestPoint)) && polyRef != INVALID_POLYREF)
{
*distance = dtVdist(closestPoint, point);
@@ -152,8 +151,8 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
// *** getting start/end poly logic ***
float distToStartPoly, distToEndPoly;
float startPoint[VERTEX_SIZE] = {startPos.y, startPos.z, startPos.x};
float endPoint[VERTEX_SIZE] = {endPos.y, endPos.z, endPos.x};
float startPoint[VERTEX_SIZE] = { startPos.y, startPos.z, startPos.x };
float endPoint[VERTEX_SIZE] = { endPos.y, endPos.z, endPos.x };
dtPolyRef startPoly = GetPolyByLocation(startPoint, &distToStartPoly);
dtPolyRef endPoly = GetPolyByLocation(endPoint, &distToEndPoly);
@@ -189,22 +188,30 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
// we may need a better number here
bool startFarFromPoly = distToStartPoly > 7.0f;
bool endFarFromPoly = distToEndPoly > 7.0f;
// create a shortcut if the path begins or end too far
// away from the desired path points.
// swimming creatures should not use a shortcut
// because exiting the water must be done following a proper path
// we just need to remove/normalize paths between 2 adjacent points
if ((!creature || !creature->CanSwim() || !creature->IsInWater() || _useRaycast)
&& (startFarFromPoly || endFarFromPoly))
if (startFarFromPoly || endFarFromPoly)
{
bool buildShotrcut = false;
bool isUnderWaterStart = _source->GetMap()->IsUnderWater(startPos.x, startPos.y, startPos.z);
bool isUnderWaterEnd = _source->GetMap()->IsUnderWater(endPos.x, endPos.y, endPos.z);
bool isFarUnderWater = startFarFromPoly ? isUnderWaterStart : isUnderWaterEnd;
Unit const* _sourceUnit = _source->ToUnit();
if (_useRaycast ||
(_sourceUnit && (_sourceUnit->CanFly() || (_sourceUnit->IsFalling() && endPos.z < startPos.z)))
)
if (_sourceUnit)
{
buildShotrcut = true;
bool isUnderWater = (_sourceUnit->CanSwim() && isUnderWaterStart && isUnderWaterEnd) || (isFarUnderWater && _useRaycast);
if (isUnderWater || _sourceUnit->CanFly() || (_sourceUnit->IsFalling() && endPos.z < startPos.z))
{
buildShotrcut = true;
}
}
if (buildShotrcut)
@@ -216,7 +223,8 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
return;
}
else
if (!isFarUnderWater)
{
float closestPoint[VERTEX_SIZE];
// we may want to use closestPointOnPolyBoundary instead
@@ -248,7 +256,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
AddFarFromPolyFlags(startFarFromPoly, endFarFromPoly);
}
else
_type = PATHFIND_NORMAL;
_type = PATHFIND_NORMAL;
BuildPointPath(startPoint, endPoint);
return;
@@ -278,7 +286,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
}
}
for (pathEndIndex = _polyLength-1; pathEndIndex > pathStartIndex; --pathEndIndex)
for (pathEndIndex = _polyLength - 1; pathEndIndex > pathStartIndex; --pathEndIndex)
{
if (_pathPolyRefs[pathEndIndex] == endPoly)
{
@@ -309,12 +317,12 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
// thus we have less poly to cover
// sub-path of optimal path is optimal
// take ~80% of the original length
// take ~80% of the original length
/// @todo play with the values here
uint32 prefixPolyLength = uint32(_polyLength * 0.8f + 0.5f);
memmove(_pathPolyRefs, _pathPolyRefs+pathStartIndex, prefixPolyLength * sizeof(dtPolyRef));
memmove(_pathPolyRefs, _pathPolyRefs + pathStartIndex, prefixPolyLength * sizeof(dtPolyRef));
dtPolyRef suffixStartPoly = _pathPolyRefs[prefixPolyLength-1];
dtPolyRef suffixStartPoly = _pathPolyRefs[prefixPolyLength - 1];
// we need any point on our suffix start poly to generate poly-path, so we need last poly in prefix data
float suffixEndPoint[VERTEX_SIZE];
@@ -323,7 +331,7 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
// we can hit offmesh connection as last poly - closestPointOnPoly() don't like that
// try to recover by using prev polyref
--prefixPolyLength;
suffixStartPoly = _pathPolyRefs[prefixPolyLength-1];
suffixStartPoly = _pathPolyRefs[prefixPolyLength - 1];
if (dtStatusFailed(_navMeshQuery->closestPointOnPoly(suffixStartPoly, endPoint, suffixEndPoint, nullptr)))
{
// suffixStartPoly is still invalid, error state
@@ -346,14 +354,14 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
else
{
dtResult = _navMeshQuery->findPath(
suffixStartPoly, // start polygon
endPoly, // end polygon
suffixEndPoint, // start position
endPoint, // end position
&_filter, // polygon search filter
_pathPolyRefs + prefixPolyLength - 1, // [out] path
(int*)&suffixPolyLength,
MAX_PATH_LENGTH - prefixPolyLength); // max number of polygons in output path
suffixStartPoly, // start polygon
endPoly, // end polygon
suffixEndPoint, // start position
endPoint, // end position
&_filter, // polygon search filter
_pathPolyRefs + prefixPolyLength - 1, // [out] path
(int*)&suffixPolyLength,
MAX_PATH_LENGTH - prefixPolyLength); // max number of polygons in output path
}
if (!suffixPolyLength || dtStatusFailed(dtResult))
@@ -384,15 +392,15 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
memset(hitNormal, 0, sizeof(hitNormal));
dtResult = _navMeshQuery->raycast(
startPoly,
startPoint,
endPoint,
&_filter,
&hit,
hitNormal,
_pathPolyRefs,
(int*)&_polyLength,
MAX_PATH_LENGTH);
startPoly,
startPoint,
endPoint,
&_filter,
&hit,
hitNormal,
_pathPolyRefs,
(int*)&_polyLength,
MAX_PATH_LENGTH);
if (!_polyLength || dtStatusFailed(dtResult))
{
@@ -449,14 +457,14 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
else
{
dtResult = _navMeshQuery->findPath(
startPoly, // start polygon
endPoly, // end polygon
startPoint, // start position
endPoint, // end position
&_filter, // polygon search filter
_pathPolyRefs, // [out] path
(int*)&_polyLength,
MAX_PATH_LENGTH); // max number of polygons in output path
startPoly, // start polygon
endPoly, // end polygon
startPoint, // start position
endPoint, // end position
&_filter, // polygon search filter
_pathPolyRefs, // [out] path
(int*)&_polyLength,
MAX_PATH_LENGTH); // max number of polygons in output path
}
if (!_polyLength || dtStatusFailed(dtResult))
@@ -493,9 +501,9 @@ void PathGenerator::BuildPolyPath(G3D::Vector3 const& startPos, G3D::Vector3 con
BuildPointPath(startPoint, endPoint);
}
void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoint)
void PathGenerator::BuildPointPath(const float* startPoint, const float* endPoint)
{
float pathPoints[MAX_POINT_PATH_LENGTH*VERTEX_SIZE];
float pathPoints[MAX_POINT_PATH_LENGTH * VERTEX_SIZE];
uint32 pointCount = 0;
dtStatus dtResult = DT_FAILURE;
if (_useRaycast)
@@ -509,26 +517,26 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
else if (_useStraightPath)
{
dtResult = _navMeshQuery->findStraightPath(
startPoint, // start position
endPoint, // end position
_pathPolyRefs, // current path
_polyLength, // lenth of current path
pathPoints, // [out] path corner points
nullptr, // [out] flags
nullptr, // [out] shortened path
(int*)&pointCount,
_pointPathLimit); // maximum number of points/polygons to use
startPoint, // start position
endPoint, // end position
_pathPolyRefs, // current path
_polyLength, // lenth of current path
pathPoints, // [out] path corner points
nullptr, // [out] flags
nullptr, // [out] shortened path
(int*)&pointCount,
_pointPathLimit); // maximum number of points/polygons to use
}
else
{
dtResult = FindSmoothPath(
startPoint, // start position
endPoint, // end position
_pathPolyRefs, // current path
_polyLength, // length of current path
pathPoints, // [out] path corner points
(int*)&pointCount,
_pointPathLimit); // maximum number of points
startPoint, // start position
endPoint, // end position
_pathPolyRefs, // current path
_polyLength, // length of current path
pathPoints, // [out] path corner points
(int*)&pointCount,
_pointPathLimit); // maximum number of points
}
// Special case with start and end positions very close to each other
@@ -538,7 +546,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
dtVcopy(&pathPoints[1 * VERTEX_SIZE], endPoint);
pointCount++;
}
else if ( pointCount < 2 || dtStatusFailed(dtResult))
else if (pointCount < 2 || dtStatusFailed(dtResult))
{
// only happens if pass bad data to findStraightPath or navmesh is broken
// single point paths can be generated here
@@ -557,7 +565,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
_pathPoints.resize(pointCount);
uint32 newPointCount = 0;
for (uint32 i = 0; i < pointCount; ++i) {
G3D::Vector3 vector = G3D::Vector3(pathPoints[i*VERTEX_SIZE+2], pathPoints[i*VERTEX_SIZE], pathPoints[i*VERTEX_SIZE+1]);
G3D::Vector3 vector = G3D::Vector3(pathPoints[i * VERTEX_SIZE + 2], pathPoints[i * VERTEX_SIZE], pathPoints[i * VERTEX_SIZE + 1]);
ZLiquidStatus status = _source->GetMap()->getLiquidStatus(vector.x, vector.y, vector.z, MAP_ALL_LIQUIDS, nullptr);
// One of the points is not in the water
if (status == LIQUID_MAP_UNDER_WATER)
@@ -571,7 +579,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
}
// if the last point is under water
// then set the desired end position instead
else if (i == pointCount - 1 )
else if (i == pointCount - 1)
{
_pathPoints[newPointCount] = GetActualEndPosition();
}
@@ -594,7 +602,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
NormalizePath();
// first point is always our current location - we need the next one
SetActualEndPosition(_pathPoints[newPointCount-1]);
SetActualEndPosition(_pathPoints[newPointCount - 1]);
// force the given destination, if needed
if (_forceDestination &&
@@ -604,7 +612,7 @@ void PathGenerator::BuildPointPath(const float *startPoint, const float *endPoin
if (Dist3DSqr(GetActualEndPosition(), GetEndPosition()) < 0.3f * Dist3DSqr(GetStartPosition(), GetEndPosition()))
{
SetActualEndPosition(GetEndPosition());
_pathPoints[_pathPoints.size()-1] = GetEndPosition();
_pathPoints[_pathPoints.size() - 1] = GetEndPosition();
}
else
{
@@ -677,8 +685,8 @@ void PathGenerator::UpdateFilter()
{
uint16 includedFlags = _filter.getIncludeFlags();
includedFlags |= GetNavTerrain(_source->GetPositionX(),
_source->GetPositionY(),
_source->GetPositionZ());
_source->GetPositionY(),
_source->GetPositionZ());
_filter.setIncludeFlags(includedFlags);
}
@@ -712,7 +720,7 @@ NavTerrain PathGenerator::GetNavTerrain(float x, float y, float z) const
bool PathGenerator::HaveTile(const G3D::Vector3& p) const
{
int tx = -1, ty = -1;
float point[VERTEX_SIZE] = {p.y, p.z, p.x};
float point[VERTEX_SIZE] = { p.y, p.z, p.x };
_navMesh->calcTileLoc(point, &tx, &ty);
@@ -731,10 +739,10 @@ uint32 PathGenerator::FixupCorridor(dtPolyRef* path, uint32 npath, uint32 maxPat
int32 furthestVisited = -1;
// Find furthest common polygon.
for (int32 i = npath-1; i >= 0; --i)
for (int32 i = npath - 1; i >= 0; --i)
{
bool found = false;
for (int32 j = nvisited-1; j >= 0; --j)
for (int32 j = nvisited - 1; j >= 0; --j)
{
if (path[i] == visited[j])
{
@@ -758,7 +766,7 @@ uint32 PathGenerator::FixupCorridor(dtPolyRef* path, uint32 npath, uint32 maxPat
uint32 orig = uint32(furthestPath + 1) < npath ? furthestPath + 1 : npath;
uint32 size = npath > orig ? npath - orig : 0;
if (req + size > maxPath)
size = maxPath-req;
size = maxPath - req;
if (size)
memmove(path + req, path + orig, size * sizeof(dtPolyRef));
@@ -767,21 +775,21 @@ uint32 PathGenerator::FixupCorridor(dtPolyRef* path, uint32 npath, uint32 maxPat
for (uint32 i = 0; i < req; ++i)
path[i] = visited[(nvisited - 1) - i];
return req+size;
return req + size;
}
bool PathGenerator::GetSteerTarget(float const* startPos, float const* endPos,
float minTargetDist, dtPolyRef const* path, uint32 pathSize,
float* steerPos, unsigned char& steerPosFlag, dtPolyRef& steerPosRef)
float minTargetDist, dtPolyRef const* path, uint32 pathSize,
float* steerPos, unsigned char& steerPosFlag, dtPolyRef& steerPosRef)
{
// Find steer target.
static const uint32 MAX_STEER_POINTS = 3;
float steerPath[MAX_STEER_POINTS*VERTEX_SIZE];
float steerPath[MAX_STEER_POINTS * VERTEX_SIZE];
unsigned char steerPathFlags[MAX_STEER_POINTS];
dtPolyRef steerPathPolys[MAX_STEER_POINTS];
uint32 nsteerPath = 0;
dtStatus dtResult = _navMeshQuery->findStraightPath(startPos, endPos, path, pathSize,
steerPath, steerPathFlags, steerPathPolys, (int*)&nsteerPath, MAX_STEER_POINTS);
steerPath, steerPathFlags, steerPathPolys, (int*)&nsteerPath, MAX_STEER_POINTS);
if (!nsteerPath || dtStatusFailed(dtResult))
return false;
@@ -791,7 +799,7 @@ bool PathGenerator::GetSteerTarget(float const* startPos, float const* endPos,
{
// Stop at Off-Mesh link or when point is further than slop away.
if ((steerPathFlags[ns] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ||
!InRangeYZX(&steerPath[ns*VERTEX_SIZE], startPos, minTargetDist, 1000.0f))
!InRangeYZX(&steerPath[ns * VERTEX_SIZE], startPos, minTargetDist, 1000.0f))
break;
ns++;
@@ -800,7 +808,7 @@ bool PathGenerator::GetSteerTarget(float const* startPos, float const* endPos,
if (ns >= nsteerPath)
return false;
dtVcopy(steerPos, &steerPath[ns*VERTEX_SIZE]);
dtVcopy(steerPos, &steerPath[ns * VERTEX_SIZE]);
steerPos[1] = startPos[1]; // keep Z value
steerPosFlag = steerPathFlags[ns];
steerPosRef = steerPathPolys[ns];
@@ -809,14 +817,14 @@ bool PathGenerator::GetSteerTarget(float const* startPos, float const* endPos,
}
dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPos,
dtPolyRef const* polyPath, uint32 polyPathSize,
float* smoothPath, int* smoothPathSize, uint32 maxSmoothPathSize)
dtPolyRef const* polyPath, uint32 polyPathSize,
float* smoothPath, int* smoothPathSize, uint32 maxSmoothPathSize)
{
*smoothPathSize = 0;
uint32 nsmoothPath = 0;
dtPolyRef polys[MAX_PATH_LENGTH];
memcpy(polys, polyPath, sizeof(dtPolyRef)*polyPathSize);
memcpy(polys, polyPath, sizeof(dtPolyRef) * polyPathSize);
uint32 npolys = polyPathSize;
float iterPos[VERTEX_SIZE], targetPos[VERTEX_SIZE];
@@ -841,7 +849,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
dtVcopy(targetPos, endPos);
}
dtVcopy(&smoothPath[nsmoothPath*VERTEX_SIZE], iterPos);
dtVcopy(&smoothPath[nsmoothPath * VERTEX_SIZE], iterPos);
nsmoothPath++;
// Move towards target a small advancement at a time until target reached or
@@ -903,7 +911,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
dtVcopy(iterPos, targetPos);
if (nsmoothPath < maxSmoothPathSize)
{
dtVcopy(&smoothPath[nsmoothPath*VERTEX_SIZE], iterPos);
dtVcopy(&smoothPath[nsmoothPath * VERTEX_SIZE], iterPos);
nsmoothPath++;
}
break;
@@ -922,7 +930,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
}
for (uint32 i = npos; i < npolys; ++i)
polys[i-npos] = polys[i];
polys[i - npos] = polys[i];
npolys -= npos;
@@ -932,7 +940,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
{
if (nsmoothPath < maxSmoothPathSize)
{
dtVcopy(&smoothPath[nsmoothPath*VERTEX_SIZE], connectionStartPos);
dtVcopy(&smoothPath[nsmoothPath * VERTEX_SIZE], connectionStartPos);
nsmoothPath++;
}
// Move position at the other side of the off-mesh link.
@@ -946,7 +954,7 @@ dtStatus PathGenerator::FindSmoothPath(float const* startPos, float const* endPo
// Store results.
if (nsmoothPath < maxSmoothPathSize)
{
dtVcopy(&smoothPath[nsmoothPath*VERTEX_SIZE], iterPos);
dtVcopy(&smoothPath[nsmoothPath * VERTEX_SIZE], iterPos);
nsmoothPath++;
}
}
@@ -1047,7 +1055,7 @@ void PathGenerator::ShortenPathUntilDist(G3D::Vector3 const& target, float dist)
if ((*_pathPoints.rbegin() - target).squaredLength() >= distSq)
return;
size_t i = _pathPoints.size()-1;
size_t i = _pathPoints.size() - 1;
float x, y, z, collisionHeight = _source->GetCollisionHeight();
// find the first i s.t.:
// - _pathPoints[i] is still too close
@@ -1056,7 +1064,7 @@ void PathGenerator::ShortenPathUntilDist(G3D::Vector3 const& target, float dist)
while (1)
{
// we know that pathPoints[i] is too close already (from the previous iteration)
if ((_pathPoints[i-1] - target).squaredLength() >= distSq)
if ((_pathPoints[i - 1] - target).squaredLength() >= distSq)
break; // bingo!
bool canCheckSlope = _slopeCheck && (GetPathType() & ~(PATHFIND_NOT_USING_PATH));
@@ -1068,7 +1076,7 @@ void PathGenerator::ShortenPathUntilDist(G3D::Vector3 const& target, float dist)
&& !IsSwimmableSegment(_source->GetPositionX(), _source->GetPositionY(), _source->GetPositionZ(), _pathPoints[i - 1].x, _pathPoints[i - 1].y, _pathPoints[i - 1].z)
&& !IsWalkableClimb(_source->GetPositionX(), _source->GetPositionY(), _source->GetPositionZ(), _pathPoints[i - 1].x, _pathPoints[i - 1].y, _pathPoints[i - 1].z)
)
)
)
{
// whenver we find a point that is not valid anymore, simply use last valid path
_pathPoints.resize(i + 1);
@@ -1088,7 +1096,7 @@ void PathGenerator::ShortenPathUntilDist(G3D::Vector3 const& target, float dist)
// ... settle for a guesstimate since i'm not confident in doing trig on every chase motion tick...
// (@todo review this)
_pathPoints[i] += (_pathPoints[i - 1] - _pathPoints[i]).direction() * (dist - (_pathPoints[i] - target).length());
_pathPoints.resize(i+1);
_pathPoints.resize(i + 1);
}
bool PathGenerator::IsInvalidDestinationZ(Unit const* target) const
@@ -1143,8 +1151,8 @@ bool PathGenerator::IsSwimmableSegment(float x, float y, float z, float destX, f
{
Creature const* _sourceCreature = _source->ToCreature();
return _source->GetMap()->IsInWater(x, y, z) &&
_source->GetMap()->IsInWater(destX, destY, destZ) &&
(!checkSwim || !_sourceCreature || _sourceCreature->CanSwim());
_source->GetMap()->IsInWater(destX, destY, destZ) &&
(!checkSwim || !_sourceCreature || _sourceCreature->CanSwim());
}
bool PathGenerator::IsWaterPath(Movement::PointsArray _pathPoints) const

View File

@@ -126,6 +126,7 @@ bool ChaseMovementGenerator<T>::DoUpdate(T* owner, uint32 time_diff)
{
cOwner->SetCannotReachTarget(true);
cOwner->StopMoving();
i_path = nullptr;
return true;
}
}

View File

@@ -29,7 +29,7 @@ class ChaseMovementGenerator : public MovementGeneratorMedium<T, ChaseMovementGe
{
public:
ChaseMovementGenerator(Unit* target, std::optional<ChaseRange> range = {}, std::optional<ChaseAngle> angle = {})
: TargetedMovementGeneratorBase(target), i_path(nullptr), i_recheckDistance(0), i_recalculateTravel(true), _range(range), _angle(angle) {}
: TargetedMovementGeneratorBase(target), i_path(nullptr), i_recheckDistance(0), i_recalculateTravel(true), _range(range), _angle(angle) {}
~ChaseMovementGenerator() {}
MovementGeneratorType GetMovementGeneratorType() { return CHASE_MOTION_TYPE; }
@@ -45,7 +45,7 @@ public:
void unitSpeedChanged() { _lastTargetPosition.reset(); }
Unit* GetTarget() const { return i_target.getTarget(); }
bool EnableWalking() const { return false;}
bool EnableWalking() const { return false; }
bool HasLostTarget(Unit* unit) const { return unit->GetVictim() != this->GetTarget(); }
private:
@@ -83,7 +83,7 @@ public:
bool PositionOkay(T* owner, Unit* target, float range, std::optional<ChaseAngle> angle = {});
static void _clearUnitStateMove(T* u) { u->ClearUnitState(UNIT_STATE_FOLLOW_MOVE); }
static void _addUnitStateMove(T* u) { u->AddUnitState(UNIT_STATE_FOLLOW_MOVE); }
static void _addUnitStateMove(T* u) { u->AddUnitState(UNIT_STATE_FOLLOW_MOVE); }
void _updateSpeed(T* owner);