Big re-organization of repository [W.I.P]

This commit is contained in:
Yehonal
2016-08-11 20:25:27 +02:00
parent c62a72c0a8
commit 0f85ce1c54
3016 changed files with 1271 additions and 1 deletions

View File

@@ -0,0 +1,68 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TRINITY_BYTECONVERTER_H
#define TRINITY_BYTECONVERTER_H
/** ByteConverter reverse your byte order. This is use
for cross platform where they have different endians.
*/
#include "Define.h"
#include <algorithm>
namespace ByteConverter
{
template<size_t T>
inline void convert(char *val)
{
std::swap(*val, *(val + T - 1));
convert<T - 2>(val + 1);
}
template<> inline void convert<0>(char *) { }
template<> inline void convert<1>(char *) { } // ignore central byte
template<typename T> inline void apply(T *val)
{
convert<sizeof(T)>((char *)(val));
}
}
#if TRINITY_ENDIAN == TRINITY_BIGENDIAN
template<typename T> inline void EndianConvert(T& val) { ByteConverter::apply<T>(&val); }
template<typename T> inline void EndianConvertReverse(T&) { }
template<typename T> inline void EndianConvertPtr(void* val) { ByteConverter::apply<T>(val); }
template<typename T> inline void EndianConvertPtrReverse(void*) { }
#else
template<typename T> inline void EndianConvert(T&) { }
template<typename T> inline void EndianConvertReverse(T& val) { ByteConverter::apply<T>(&val); }
template<typename T> inline void EndianConvertPtr(void*) { }
template<typename T> inline void EndianConvertPtrReverse(void* val) { ByteConverter::apply<T>(val); }
#endif
template<typename T> void EndianConvert(T*); // will generate link error
template<typename T> void EndianConvertReverse(T*); // will generate link error
inline void EndianConvert(uint8&) { }
inline void EndianConvert( int8&) { }
inline void EndianConvertReverse(uint8&) { }
inline void EndianConvertReverse( int8&) { }
#endif

View File

@@ -0,0 +1,103 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "EventProcessor.h"
EventProcessor::EventProcessor()
{
m_time = 0;
m_aborting = false;
}
EventProcessor::~EventProcessor()
{
KillAllEvents(true);
}
void EventProcessor::Update(uint32 p_time)
{
// update time
m_time += p_time;
// main event loop
EventList::iterator i;
while (((i = m_events.begin()) != m_events.end()) && i->first <= m_time)
{
// get and remove event from queue
BasicEvent* Event = i->second;
m_events.erase(i);
if (!Event->to_Abort)
{
if (Event->Execute(m_time, p_time))
{
// completely destroy event if it is not re-added
delete Event;
}
}
else
{
Event->Abort(m_time);
delete Event;
}
}
}
void EventProcessor::KillAllEvents(bool force)
{
// prevent event insertions
m_aborting = true;
// first, abort all existing events
for (EventList::iterator i = m_events.begin(); i != m_events.end();)
{
EventList::iterator i_old = i;
++i;
i_old->second->to_Abort = true;
i_old->second->Abort(m_time);
if (force || i_old->second->IsDeletable())
{
delete i_old->second;
if (!force) // need per-element cleanup
m_events.erase (i_old);
}
}
// fast clear event list (in force case)
if (force)
m_events.clear();
}
void EventProcessor::AddEvent(BasicEvent* Event, uint64 e_time, bool set_addtime)
{
if (set_addtime) Event->m_addTime = m_time;
Event->m_execTime = e_time;
m_events.insert(std::pair<uint64, BasicEvent*>(e_time, Event));
}
uint64 EventProcessor::CalculateTime(uint64 t_offset) const
{
return(m_time + t_offset);
}
uint64 EventProcessor::CalculateQueueTime(uint64 delay) const
{
return CalculateTime(delay - (m_time % delay));
}

View File

@@ -0,0 +1,77 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __EVENTPROCESSOR_H
#define __EVENTPROCESSOR_H
#include "Define.h"
#include <map>
// Note. All times are in milliseconds here.
class BasicEvent
{
public:
BasicEvent()
{
to_Abort = false;
m_addTime = 0;
m_execTime = 0;
}
virtual ~BasicEvent() { } // override destructor to perform some actions on event removal
// this method executes when the event is triggered
// return false if event does not want to be deleted
// e_time is execution time, p_time is update interval
virtual bool Execute(uint64 /*e_time*/, uint32 /*p_time*/) { return true; }
virtual bool IsDeletable() const { return true; } // this event can be safely deleted
virtual void Abort(uint64 /*e_time*/) { } // this method executes when the event is aborted
bool to_Abort; // set by externals when the event is aborted, aborted events don't execute
// and get Abort call when deleted
// these can be used for time offset control
uint64 m_addTime; // time when the event was added to queue, filled by event handler
uint64 m_execTime; // planned time of next execution, filled by event handler
};
typedef std::multimap<uint64, BasicEvent*> EventList;
class EventProcessor
{
public:
EventProcessor();
~EventProcessor();
void Update(uint32 p_time);
void KillAllEvents(bool force);
void AddEvent(BasicEvent* Event, uint64 e_time, bool set_addtime = true);
uint64 CalculateTime(uint64 t_offset) const;
// Xinef: calculates next queue tick time
uint64 CalculateQueueTime(uint64 delay) const;
protected:
uint64 m_time;
EventList m_events;
bool m_aborting;
};
#endif

View File

@@ -0,0 +1,264 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _WIN32
#include "Common.h"
#include "Log.h"
#include <cstring>
#include <windows.h>
#include <winsvc.h>
// stupid ACE define
#ifdef main
#undef main
#endif //main
#if !defined(WINADVAPI)
#if !defined(_ADVAPI32_)
#define WINADVAPI DECLSPEC_IMPORT
#else
#define WINADVAPI
#endif
#endif
extern int main(int argc, char ** argv);
extern char serviceLongName[];
extern char serviceName[];
extern char serviceDescription[];
extern int m_ServiceStatus;
SERVICE_STATUS serviceStatus;
SERVICE_STATUS_HANDLE serviceStatusHandle = 0;
typedef WINADVAPI BOOL (WINAPI *CSD_T)(SC_HANDLE, DWORD, LPCVOID);
bool WinServiceInstall()
{
SC_HANDLE serviceControlManager = OpenSCManager(0, 0, SC_MANAGER_CREATE_SERVICE);
if (serviceControlManager)
{
char path[_MAX_PATH + 10];
if (GetModuleFileName( 0, path, sizeof(path)/sizeof(path[0]) ) > 0)
{
SC_HANDLE service;
std::strcat(path, " --service");
service = CreateService(serviceControlManager,
serviceName, // name of service
serviceLongName, // service name to display
SERVICE_ALL_ACCESS, // desired access
// service type
SERVICE_WIN32_OWN_PROCESS | SERVICE_INTERACTIVE_PROCESS,
SERVICE_AUTO_START, // start type
SERVICE_ERROR_IGNORE, // error control type
path, // service's binary
0, // no load ordering group
0, // no tag identifier
0, // no dependencies
0, // LocalSystem account
0); // no password
if (service)
{
HMODULE advapi32 = GetModuleHandle("ADVAPI32.DLL");
if (!advapi32)
{
CloseServiceHandle(service);
CloseServiceHandle(serviceControlManager);
return false;
}
CSD_T ChangeService_Config2 = (CSD_T) GetProcAddress(advapi32, "ChangeServiceConfig2A");
if (!ChangeService_Config2)
{
CloseServiceHandle(service);
CloseServiceHandle(serviceControlManager);
return false;
}
SERVICE_DESCRIPTION sdBuf;
sdBuf.lpDescription = serviceDescription;
ChangeService_Config2(
service, // handle to service
SERVICE_CONFIG_DESCRIPTION, // change: description
&sdBuf); // new data
SC_ACTION _action[1];
_action[0].Type = SC_ACTION_RESTART;
_action[0].Delay = 10000;
SERVICE_FAILURE_ACTIONS sfa;
ZeroMemory(&sfa, sizeof(SERVICE_FAILURE_ACTIONS));
sfa.lpsaActions = _action;
sfa.cActions = 1;
sfa.dwResetPeriod =INFINITE;
ChangeService_Config2(
service, // handle to service
SERVICE_CONFIG_FAILURE_ACTIONS, // information level
&sfa); // new data
CloseServiceHandle(service);
}
}
CloseServiceHandle(serviceControlManager);
}
return true;
}
bool WinServiceUninstall()
{
SC_HANDLE serviceControlManager = OpenSCManager(0, 0, SC_MANAGER_CONNECT);
if (serviceControlManager)
{
SC_HANDLE service = OpenService(serviceControlManager,
serviceName, SERVICE_QUERY_STATUS | DELETE);
if (service)
{
SERVICE_STATUS serviceStatus2;
if (QueryServiceStatus(service, &serviceStatus2))
{
if (serviceStatus2.dwCurrentState == SERVICE_STOPPED)
DeleteService(service);
}
CloseServiceHandle(service);
}
CloseServiceHandle(serviceControlManager);
}
return true;
}
void WINAPI ServiceControlHandler(DWORD controlCode)
{
switch (controlCode)
{
case SERVICE_CONTROL_INTERROGATE:
break;
case SERVICE_CONTROL_SHUTDOWN:
case SERVICE_CONTROL_STOP:
serviceStatus.dwCurrentState = SERVICE_STOP_PENDING;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
m_ServiceStatus = 0;
return;
case SERVICE_CONTROL_PAUSE:
m_ServiceStatus = 2;
serviceStatus.dwCurrentState = SERVICE_PAUSED;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
break;
case SERVICE_CONTROL_CONTINUE:
serviceStatus.dwCurrentState = SERVICE_RUNNING;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
m_ServiceStatus = 1;
break;
default:
if ( controlCode >= 128 && controlCode <= 255 )
// user defined control code
break;
else
// unrecognized control code
break;
}
SetServiceStatus(serviceStatusHandle, &serviceStatus);
}
void WINAPI ServiceMain(DWORD argc, char *argv[])
{
// initialise service status
serviceStatus.dwServiceType = SERVICE_WIN32;
serviceStatus.dwCurrentState = SERVICE_START_PENDING;
serviceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_PAUSE_CONTINUE;
serviceStatus.dwWin32ExitCode = NO_ERROR;
serviceStatus.dwServiceSpecificExitCode = NO_ERROR;
serviceStatus.dwCheckPoint = 0;
serviceStatus.dwWaitHint = 0;
serviceStatusHandle = RegisterServiceCtrlHandler(serviceName, ServiceControlHandler);
if ( serviceStatusHandle )
{
char path[_MAX_PATH + 1];
unsigned int i, last_slash = 0;
GetModuleFileName(0, path, sizeof(path)/sizeof(path[0]));
for (i = 0; i < std::strlen(path); i++)
{
if (path[i] == '\\') last_slash = i;
}
path[last_slash] = 0;
// service is starting
serviceStatus.dwCurrentState = SERVICE_START_PENDING;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
// do initialisation here
SetCurrentDirectory(path);
// running
serviceStatus.dwControlsAccepted |= (SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_SHUTDOWN);
serviceStatus.dwCurrentState = SERVICE_RUNNING;
SetServiceStatus( serviceStatusHandle, &serviceStatus );
////////////////////////
// service main cycle //
////////////////////////
m_ServiceStatus = 1;
argc = 1;
main(argc, argv);
// service was stopped
serviceStatus.dwCurrentState = SERVICE_STOP_PENDING;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
// do cleanup here
// service is now stopped
serviceStatus.dwControlsAccepted &= ~(SERVICE_ACCEPT_STOP | SERVICE_ACCEPT_SHUTDOWN);
serviceStatus.dwCurrentState = SERVICE_STOPPED;
SetServiceStatus(serviceStatusHandle, &serviceStatus);
}
}
bool WinServiceRun()
{
SERVICE_TABLE_ENTRY serviceTable[] =
{
{ serviceName, ServiceMain },
{ 0, 0 }
};
if (!StartServiceCtrlDispatcher(serviceTable))
{
sLog->outError("StartService Failed. Error [%u]", ::GetLastError());
return false;
}
return true;
}
#endif

View File

@@ -0,0 +1,29 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _WIN32
#ifndef _WIN32_SERVICE_
#define _WIN32_SERVICE_
bool WinServiceInstall();
bool WinServiceUninstall();
bool WinServiceRun();
#endif // _WIN32_SERVICE_
#endif // _WIN32

View File

@@ -0,0 +1,41 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __SIGNAL_HANDLER_H__
#define __SIGNAL_HANDLER_H__
#include <ace/Event_Handler.h>
namespace Trinity
{
/// Handle termination signals
class SignalHandler : public ACE_Event_Handler
{
public:
int handle_signal(int SigNum, siginfo_t* = NULL, ucontext_t* = NULL)
{
HandleSignal(SigNum);
return 0;
}
virtual void HandleSignal(int /*SigNum*/) { };
};
}
#endif /* __SIGNAL_HANDLER_H__ */

View File

@@ -0,0 +1,201 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TRINITY_TIMER_H
#define TRINITY_TIMER_H
#include "ace/OS_NS_sys_time.h"
#include "Common.h"
inline uint32 getMSTime()
{
static const ACE_Time_Value ApplicationStartTime = ACE_OS::gettimeofday();
return (ACE_OS::gettimeofday() - ApplicationStartTime).msec();
}
inline uint32 getMSTimeDiff(uint32 oldMSTime, uint32 newMSTime)
{
// getMSTime() have limited data range and this is case when it overflow in this tick
if (oldMSTime > newMSTime)
return (0xFFFFFFFF - oldMSTime) + newMSTime;
else
return newMSTime - oldMSTime;
}
inline uint32 GetMSTimeDiffToNow(uint32 oldMSTime)
{
return getMSTimeDiff(oldMSTime, getMSTime());
}
struct IntervalTimer
{
public:
IntervalTimer()
: _interval(0), _current(0)
{
}
void Update(time_t diff)
{
_current += diff;
if (_current < 0)
_current = 0;
}
bool Passed()
{
return _current >= _interval;
}
void Reset()
{
if (_current >= _interval)
_current %= _interval;
}
void SetCurrent(time_t current)
{
_current = current;
}
void SetInterval(time_t interval)
{
_interval = interval;
}
time_t GetInterval() const
{
return _interval;
}
time_t GetCurrent() const
{
return _current;
}
private:
time_t _interval;
time_t _current;
};
struct TimeTracker
{
public:
TimeTracker(time_t expiry)
: i_expiryTime(expiry)
{
}
void Update(time_t diff)
{
i_expiryTime -= diff;
}
bool Passed() const
{
return i_expiryTime <= 0;
}
void Reset(time_t interval)
{
i_expiryTime = interval;
}
time_t GetExpiry() const
{
return i_expiryTime;
}
private:
time_t i_expiryTime;
};
struct TimeTrackerSmall
{
public:
TimeTrackerSmall(uint32 expiry = 0)
: i_expiryTime(expiry)
{
}
void Update(int32 diff)
{
i_expiryTime -= diff;
}
bool Passed() const
{
return i_expiryTime <= 0;
}
void Reset(uint32 interval)
{
i_expiryTime = interval;
}
int32 GetExpiry() const
{
return i_expiryTime;
}
private:
int32 i_expiryTime;
};
struct PeriodicTimer
{
public:
PeriodicTimer(int32 period, int32 start_time)
: i_period(period), i_expireTime(start_time)
{
}
bool Update(const uint32 diff)
{
if ((i_expireTime -= diff) > 0)
return false;
i_expireTime += i_period > int32(diff) ? i_period : diff;
return true;
}
void SetPeriodic(int32 period, int32 start_time)
{
i_expireTime = start_time;
i_period = period;
}
// Tracker interface
void TUpdate(int32 diff) { i_expireTime -= diff; }
bool TPassed() const { return i_expireTime <= 0; }
void TReset(int32 diff, int32 period) { i_expireTime += period > diff ? period : diff; }
private:
int32 i_period;
int32 i_expireTime;
};
#endif

View File

@@ -0,0 +1,551 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Util.h"
#include "Common.h"
#include "utf8.h"
#include "SFMT.h"
#include "Errors.h" // for ASSERT
#include <ace/TSS_T.h>
typedef ACE_TSS<SFMTRand> SFMTRandTSS;
static SFMTRandTSS sfmtRand;
int32 irand(int32 min, int32 max)
{
ASSERT(max >= min);
return int32(sfmtRand->IRandom(min, max));
}
uint32 urand(uint32 min, uint32 max)
{
ASSERT(max >= min);
return sfmtRand->URandom(min, max);
}
float frand(float min, float max)
{
ASSERT(max >= min);
return float(sfmtRand->Random() * (max - min) + min);
}
uint32 rand32()
{
return int32(sfmtRand->BRandom());
}
double rand_norm()
{
return sfmtRand->Random();
}
double rand_chance()
{
return sfmtRand->Random() * 100.0;
}
Tokenizer::Tokenizer(const std::string &src, const char sep, uint32 vectorReserve)
{
m_str = new char[src.length() + 1];
memcpy(m_str, src.c_str(), src.length() + 1);
if (vectorReserve)
m_storage.reserve(vectorReserve);
char* posold = m_str;
char* posnew = m_str;
for (;;)
{
if (*posnew == sep)
{
m_storage.push_back(posold);
posold = posnew + 1;
*posnew = '\0';
}
else if (*posnew == '\0')
{
// Hack like, but the old code accepted these kind of broken strings,
// so changing it would break other things
if (posold != posnew)
m_storage.push_back(posold);
break;
}
++posnew;
}
}
void stripLineInvisibleChars(std::string &str)
{
static std::string const invChars = " \t\7\n";
size_t wpos = 0;
bool space = false;
for (size_t pos = 0; pos < str.size(); ++pos)
{
if (invChars.find(str[pos])!=std::string::npos)
{
if (!space)
{
str[wpos++] = ' ';
space = true;
}
}
else
{
if (wpos!=pos)
str[wpos++] = str[pos];
else
++wpos;
space = false;
}
}
if (wpos < str.size())
str.erase(wpos, str.size());
if (str.find("|TInterface")!=std::string::npos)
str.clear();
}
std::string secsToTimeString(uint64 timeInSecs, bool shortText)
{
uint64 secs = timeInSecs % MINUTE;
uint64 minutes = timeInSecs % HOUR / MINUTE;
uint64 hours = timeInSecs % DAY / HOUR;
uint64 days = timeInSecs / DAY;
std::ostringstream ss;
if (days)
ss << days << (shortText ? "d" : " day(s) ");
if (hours)
ss << hours << (shortText ? "h" : " hour(s) ");
if (minutes)
ss << minutes << (shortText ? "m" : " minute(s) ");
if (secs || (!days && !hours && !minutes) )
ss << secs << (shortText ? "s" : " second(s) ");
std::string str = ss.str();
if (!shortText && !str.empty() && str[str.size()-1] == ' ')
str.resize(str.size()-1);
return str;
}
int32 MoneyStringToMoney(const std::string& moneyString)
{
int32 money = 0;
if (!(std::count(moneyString.begin(), moneyString.end(), 'g') == 1 ||
std::count(moneyString.begin(), moneyString.end(), 's') == 1 ||
std::count(moneyString.begin(), moneyString.end(), 'c') == 1))
return 0; // Bad format
Tokenizer tokens(moneyString, ' ');
for (Tokenizer::const_iterator itr = tokens.begin(); itr != tokens.end(); ++itr)
{
std::string tokenString(*itr);
size_t gCount = std::count(tokenString.begin(), tokenString.end(), 'g');
size_t sCount = std::count(tokenString.begin(), tokenString.end(), 's');
size_t cCount = std::count(tokenString.begin(), tokenString.end(), 'c');
if (gCount + sCount + cCount != 1)
return 0;
uint32 amount = atoi(*itr);
if (gCount == 1)
money += amount * 100 * 100;
else if (sCount == 1)
money += amount * 100;
else if (cCount == 1)
money += amount;
}
return money;
}
uint32 TimeStringToSecs(const std::string& timestring)
{
uint32 secs = 0;
uint32 buffer = 0;
uint32 multiplier = 0;
for (std::string::const_iterator itr = timestring.begin(); itr != timestring.end(); ++itr)
{
if (isdigit(*itr))
{
buffer*=10;
buffer+= (*itr)-'0';
}
else
{
switch (*itr)
{
case 'd': multiplier = DAY; break;
case 'h': multiplier = HOUR; break;
case 'm': multiplier = MINUTE; break;
case 's': multiplier = 1; break;
default : return 0; //bad format
}
buffer*=multiplier;
secs+=buffer;
buffer=0;
}
}
return secs;
}
std::string TimeToTimestampStr(time_t t)
{
tm aTm;
ACE_OS::localtime_r(&t, &aTm);
// YYYY year
// MM month (2 digits 01-12)
// DD day (2 digits 01-31)
// HH hour (2 digits 00-23)
// MM minutes (2 digits 00-59)
// SS seconds (2 digits 00-59)
char buf[20];
snprintf(buf, 20, "%04d-%02d-%02d_%02d-%02d-%02d", aTm.tm_year+1900, aTm.tm_mon+1, aTm.tm_mday, aTm.tm_hour, aTm.tm_min, aTm.tm_sec);
return std::string(buf);
}
/// Check if the string is a valid ip address representation
bool IsIPAddress(char const* ipaddress)
{
if (!ipaddress)
return false;
// Let the big boys do it.
// Drawback: all valid ip address formats are recognized e.g.: 12.23, 121234, 0xABCD)
return inet_addr(ipaddress) != INADDR_NONE;
}
std::string GetAddressString(ACE_INET_Addr const& addr)
{
char buf[ACE_MAX_FULLY_QUALIFIED_NAME_LEN + 16];
addr.addr_to_string(buf, ACE_MAX_FULLY_QUALIFIED_NAME_LEN + 16);
return buf;
}
bool IsIPAddrInNetwork(ACE_INET_Addr const& net, ACE_INET_Addr const& addr, ACE_INET_Addr const& subnetMask)
{
uint32 mask = subnetMask.get_ip_address();
if ((net.get_ip_address() & mask) == (addr.get_ip_address() & mask))
return true;
return false;
}
/// create PID file
uint32 CreatePIDFile(const std::string& filename)
{
FILE* pid_file = fopen (filename.c_str(), "w" );
if (pid_file == NULL)
return 0;
#ifdef _WIN32
DWORD pid = GetCurrentProcessId();
#else
pid_t pid = getpid();
#endif
fprintf(pid_file, "%u", pid );
fclose(pid_file);
return (uint32)pid;
}
size_t utf8length(std::string& utf8str)
{
try
{
return utf8::distance(utf8str.c_str(), utf8str.c_str()+utf8str.size());
}
catch(std::exception)
{
utf8str = "";
return 0;
}
}
void utf8truncate(std::string& utf8str, size_t len)
{
try
{
size_t wlen = utf8::distance(utf8str.c_str(), utf8str.c_str()+utf8str.size());
if (wlen <= len)
return;
std::wstring wstr;
wstr.resize(wlen);
utf8::utf8to16(utf8str.c_str(), utf8str.c_str()+utf8str.size(), &wstr[0]);
wstr.resize(len);
char* oend = utf8::utf16to8(wstr.c_str(), wstr.c_str()+wstr.size(), &utf8str[0]);
utf8str.resize(oend-(&utf8str[0])); // remove unused tail
}
catch(std::exception)
{
utf8str = "";
}
}
bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize)
{
try
{
size_t len = utf8::distance(utf8str, utf8str+csize);
if (len > wsize)
{
if (wsize > 0)
wstr[0] = L'\0';
wsize = 0;
return false;
}
wsize = len;
utf8::utf8to16(utf8str, utf8str+csize, wstr);
wstr[len] = L'\0';
}
catch(std::exception)
{
if (wsize > 0)
wstr[0] = L'\0';
wsize = 0;
return false;
}
return true;
}
bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr)
{
try
{
if (size_t len = utf8::distance(utf8str.c_str(), utf8str.c_str()+utf8str.size()))
{
wstr.resize(len);
utf8::utf8to16(utf8str.c_str(), utf8str.c_str()+utf8str.size(), &wstr[0]);
}
}
catch(std::exception)
{
wstr = L"";
return false;
}
return true;
}
bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str)
{
try
{
std::string utf8str2;
utf8str2.resize(size*4); // allocate for most long case
if (size)
{
char* oend = utf8::utf16to8(wstr, wstr+size, &utf8str2[0]);
utf8str2.resize(oend-(&utf8str2[0])); // remove unused tail
}
utf8str = utf8str2;
}
catch(std::exception)
{
utf8str = "";
return false;
}
return true;
}
bool WStrToUtf8(std::wstring wstr, std::string& utf8str)
{
try
{
std::string utf8str2;
utf8str2.resize(wstr.size()*4); // allocate for most long case
if (wstr.size())
{
char* oend = utf8::utf16to8(wstr.c_str(), wstr.c_str()+wstr.size(), &utf8str2[0]);
utf8str2.resize(oend-(&utf8str2[0])); // remove unused tail
}
utf8str = utf8str2;
}
catch(std::exception)
{
utf8str = "";
return false;
}
return true;
}
typedef wchar_t const* const* wstrlist;
std::wstring GetMainPartOfName(std::wstring wname, uint32 declension)
{
// supported only Cyrillic cases
if (wname.size() < 1 || !isCyrillicCharacter(wname[0]) || declension > 5)
return wname;
// Important: end length must be <= MAX_INTERNAL_PLAYER_NAME-MAX_PLAYER_NAME (3 currently)
static wchar_t const a_End[] = { wchar_t(1), wchar_t(0x0430), wchar_t(0x0000)};
static wchar_t const o_End[] = { wchar_t(1), wchar_t(0x043E), wchar_t(0x0000)};
static wchar_t const ya_End[] = { wchar_t(1), wchar_t(0x044F), wchar_t(0x0000)};
static wchar_t const ie_End[] = { wchar_t(1), wchar_t(0x0435), wchar_t(0x0000)};
static wchar_t const i_End[] = { wchar_t(1), wchar_t(0x0438), wchar_t(0x0000)};
static wchar_t const yeru_End[] = { wchar_t(1), wchar_t(0x044B), wchar_t(0x0000)};
static wchar_t const u_End[] = { wchar_t(1), wchar_t(0x0443), wchar_t(0x0000)};
static wchar_t const yu_End[] = { wchar_t(1), wchar_t(0x044E), wchar_t(0x0000)};
static wchar_t const oj_End[] = { wchar_t(2), wchar_t(0x043E), wchar_t(0x0439), wchar_t(0x0000)};
static wchar_t const ie_j_End[] = { wchar_t(2), wchar_t(0x0435), wchar_t(0x0439), wchar_t(0x0000)};
static wchar_t const io_j_End[] = { wchar_t(2), wchar_t(0x0451), wchar_t(0x0439), wchar_t(0x0000)};
static wchar_t const o_m_End[] = { wchar_t(2), wchar_t(0x043E), wchar_t(0x043C), wchar_t(0x0000)};
static wchar_t const io_m_End[] = { wchar_t(2), wchar_t(0x0451), wchar_t(0x043C), wchar_t(0x0000)};
static wchar_t const ie_m_End[] = { wchar_t(2), wchar_t(0x0435), wchar_t(0x043C), wchar_t(0x0000)};
static wchar_t const soft_End[] = { wchar_t(1), wchar_t(0x044C), wchar_t(0x0000)};
static wchar_t const j_End[] = { wchar_t(1), wchar_t(0x0439), wchar_t(0x0000)};
static wchar_t const* const dropEnds[6][8] = {
{ &a_End[1], &o_End[1], &ya_End[1], &ie_End[1], &soft_End[1], &j_End[1], NULL, NULL },
{ &a_End[1], &ya_End[1], &yeru_End[1], &i_End[1], NULL, NULL, NULL, NULL },
{ &ie_End[1], &u_End[1], &yu_End[1], &i_End[1], NULL, NULL, NULL, NULL },
{ &u_End[1], &yu_End[1], &o_End[1], &ie_End[1], &soft_End[1], &ya_End[1], &a_End[1], NULL },
{ &oj_End[1], &io_j_End[1], &ie_j_End[1], &o_m_End[1], &io_m_End[1], &ie_m_End[1], &yu_End[1], NULL },
{ &ie_End[1], &i_End[1], NULL, NULL, NULL, NULL, NULL, NULL }
};
for (wchar_t const* const* itr = &dropEnds[declension][0]; *itr; ++itr)
{
size_t len = size_t((*itr)[-1]); // get length from string size field
if (wname.substr(wname.size()-len, len)==*itr)
return wname.substr(0, wname.size()-len);
}
return wname;
}
bool utf8ToConsole(const std::string& utf8str, std::string& conStr)
{
#if PLATFORM == PLATFORM_WINDOWS
std::wstring wstr;
if (!Utf8toWStr(utf8str, wstr))
return false;
conStr.resize(wstr.size());
CharToOemBuffW(&wstr[0], &conStr[0], wstr.size());
#else
// not implemented yet
conStr = utf8str;
#endif
return true;
}
bool consoleToUtf8(const std::string& conStr, std::string& utf8str)
{
#if PLATFORM == PLATFORM_WINDOWS
std::wstring wstr;
wstr.resize(conStr.size());
OemToCharBuffW(&conStr[0], &wstr[0], conStr.size());
return WStrToUtf8(wstr, utf8str);
#else
// not implemented yet
utf8str = conStr;
return true;
#endif
}
bool Utf8FitTo(const std::string& str, std::wstring search)
{
std::wstring temp;
if (!Utf8toWStr(str, temp))
return false;
// converting to lower case
wstrToLower( temp );
if (temp.find(search) == std::wstring::npos)
return false;
return true;
}
void utf8printf(FILE* out, const char *str, ...)
{
va_list ap;
va_start(ap, str);
vutf8printf(out, str, &ap);
va_end(ap);
}
void vutf8printf(FILE* out, const char *str, va_list* ap)
{
#if PLATFORM == PLATFORM_WINDOWS
char temp_buf[32*1024];
wchar_t wtemp_buf[32*1024];
size_t temp_len = vsnprintf(temp_buf, 32*1024, str, *ap);
//vsnprintf returns -1 if the buffer is too small
if (temp_len == size_t(-1))
temp_len = 32*1024-1;
size_t wtemp_len = 32*1024-1;
Utf8toWStr(temp_buf, temp_len, wtemp_buf, wtemp_len);
CharToOemBuffW(&wtemp_buf[0], &temp_buf[0], wtemp_len+1);
fprintf(out, "%s", temp_buf);
#else
vfprintf(out, str, *ap);
#endif
}
std::string ByteArrayToHexStr(uint8 const* bytes, uint32 arrayLen, bool reverse /* = false */)
{
int32 init = 0;
int32 end = arrayLen;
int8 op = 1;
if (reverse)
{
init = arrayLen - 1;
end = -1;
op = -1;
}
std::ostringstream ss;
for (int32 i = init; i != end; i += op)
{
char buffer[4];
sprintf(buffer, "%02X", bytes[i]);
ss << buffer;
}
return ss.str();
}

View File

@@ -0,0 +1,905 @@
/*
* Copyright (C)
* Copyright (C)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _UTIL_H
#define _UTIL_H
#include "Define.h"
#include "Errors.h"
#include <algorithm>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <ace/INET_Addr.h>
// Searcher for map of structs
template<typename T, class S> struct Finder
{
T val_;
T S::* idMember_;
Finder(T val, T S::* idMember) : val_(val), idMember_(idMember) {}
bool operator()(const std::pair<int, S> &obj) { return obj.second.*idMember_ == val_; }
};
class Tokenizer
{
public:
typedef std::vector<char const*> StorageType;
typedef StorageType::size_type size_type;
typedef StorageType::const_iterator const_iterator;
typedef StorageType::reference reference;
typedef StorageType::const_reference const_reference;
public:
Tokenizer(const std::string &src, char const sep, uint32 vectorReserve = 0);
~Tokenizer() { delete[] m_str; }
const_iterator begin() const { return m_storage.begin(); }
const_iterator end() const { return m_storage.end(); }
size_type size() const { return m_storage.size(); }
reference operator [] (size_type i) { return m_storage[i]; }
const_reference operator [] (size_type i) const { return m_storage[i]; }
private:
char* m_str;
StorageType m_storage;
};
void stripLineInvisibleChars(std::string &src);
int32 MoneyStringToMoney(const std::string& moneyString);
std::string secsToTimeString(uint64 timeInSecs, bool shortText = false);
uint32 TimeStringToSecs(const std::string& timestring);
std::string TimeToTimestampStr(time_t t);
/* Return a random number in the range min..max. */
int32 irand(int32 min, int32 max);
/* Return a random number in the range min..max (inclusive). */
uint32 urand(uint32 min, uint32 max);
/* Return a random number in the range 0 .. UINT32_MAX. */
uint32 rand32();
/* Return a random number in the range min..max */
float frand(float min, float max);
/* Return a random double from 0.0 to 1.0 (exclusive). */
double rand_norm();
/* Return a random double from 0.0 to 100.0 (exclusive). */
double rand_chance();
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_f(float chance)
{
return chance > rand_chance();
}
/* Return true if a random roll fits in the specified chance (range 0-100). */
inline bool roll_chance_i(int32 chance)
{
return chance > irand(0, 99);
}
inline void ApplyPercentModFloatVar(float& var, float val, bool apply)
{
if (val == -100.0f) // prevent set var to zero
val = -99.99f;
var *= (apply ? (100.0f + val) / 100.0f : 100.0f / (100.0f + val));
}
// Percentage calculation
template <class T, class U>
inline T CalculatePct(T base, U pct)
{
return T(base * static_cast<float>(pct) / 100.0f);
}
template <class T, class U>
inline T AddPct(T &base, U pct)
{
return base += CalculatePct(base, pct);
}
template <class T, class U>
inline T ApplyPct(T &base, U pct)
{
return base = CalculatePct(base, pct);
}
template <class T>
inline T RoundToInterval(T& num, T floor, T ceil)
{
return num = std::min(std::max(num, floor), ceil);
}
// UTF8 handling
bool Utf8toWStr(const std::string& utf8str, std::wstring& wstr);
// in wsize==max size of buffer, out wsize==real string size
bool Utf8toWStr(char const* utf8str, size_t csize, wchar_t* wstr, size_t& wsize);
inline bool Utf8toWStr(const std::string& utf8str, wchar_t* wstr, size_t& wsize)
{
return Utf8toWStr(utf8str.c_str(), utf8str.size(), wstr, wsize);
}
bool WStrToUtf8(std::wstring wstr, std::string& utf8str);
// size==real string size
bool WStrToUtf8(wchar_t* wstr, size_t size, std::string& utf8str);
size_t utf8length(std::string& utf8str); // set string to "" if invalid utf8 sequence
void utf8truncate(std::string& utf8str, size_t len);
inline bool isBasicLatinCharacter(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
return true;
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
return true;
return false;
}
inline bool isExtendedLatinCharacter(wchar_t wchar)
{
if (isBasicLatinCharacter(wchar))
return true;
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
return true;
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
return true;
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
return true;
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
return true;
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
return true;
if (wchar >= 0x0100 && wchar <= 0x012F) // LATIN CAPITAL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK
return true;
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
return true;
return false;
}
inline bool isCyrillicCharacter(wchar_t wchar)
{
if (wchar >= 0x0410 && wchar <= 0x044F) // CYRILLIC CAPITAL LETTER A - CYRILLIC SMALL LETTER YA
return true;
if (wchar == 0x0401 || wchar == 0x0451) // CYRILLIC CAPITAL LETTER IO, CYRILLIC SMALL LETTER IO
return true;
return false;
}
inline bool isEastAsianCharacter(wchar_t wchar)
{
if (wchar >= 0x1100 && wchar <= 0x11F9) // Hangul Jamo
return true;
if (wchar >= 0x3041 && wchar <= 0x30FF) // Hiragana + Katakana
return true;
if (wchar >= 0x3131 && wchar <= 0x318E) // Hangul Compatibility Jamo
return true;
if (wchar >= 0x31F0 && wchar <= 0x31FF) // Katakana Phonetic Ext.
return true;
if (wchar >= 0x3400 && wchar <= 0x4DB5) // CJK Ideographs Ext. A
return true;
if (wchar >= 0x4E00 && wchar <= 0x9FC3) // Unified CJK Ideographs
return true;
if (wchar >= 0xAC00 && wchar <= 0xD7A3) // Hangul Syllables
return true;
if (wchar >= 0xFF01 && wchar <= 0xFFEE) // Halfwidth forms
return true;
return false;
}
inline bool isNumeric(wchar_t wchar)
{
return (wchar >= L'0' && wchar <=L'9');
}
inline bool isNumeric(char c)
{
return (c >= '0' && c <='9');
}
inline bool isNumeric(char const* str)
{
for (char const* c = str; *c; ++c)
if (!isNumeric(*c))
return false;
return true;
}
inline bool isNumericOrSpace(wchar_t wchar)
{
return isNumeric(wchar) || wchar == L' ';
}
inline bool isBasicLatinString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isBasicLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isExtendedLatinString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isExtendedLatinCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isCyrillicString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isCyrillicCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline bool isEastAsianString(const std::wstring &wstr, bool numericOrSpace)
{
for (size_t i = 0; i < wstr.size(); ++i)
if (!isEastAsianCharacter(wstr[i]) && (!numericOrSpace || !isNumericOrSpace(wstr[i])))
return false;
return true;
}
inline wchar_t wcharToUpper(wchar_t wchar)
{
if (wchar >= L'a' && wchar <= L'z') // LATIN SMALL LETTER A - LATIN SMALL LETTER Z
return wchar_t(uint16(wchar)-0x0020);
if (wchar == 0x00DF) // LATIN SMALL LETTER SHARP S
return wchar_t(0x1E9E);
if (wchar >= 0x00E0 && wchar <= 0x00F6) // LATIN SMALL LETTER A WITH GRAVE - LATIN SMALL LETTER O WITH DIAERESIS
return wchar_t(uint16(wchar)-0x0020);
if (wchar >= 0x00F8 && wchar <= 0x00FE) // LATIN SMALL LETTER O WITH STROKE - LATIN SMALL LETTER THORN
return wchar_t(uint16(wchar)-0x0020);
if (wchar >= 0x0101 && wchar <= 0x012F) // LATIN SMALL LETTER A WITH MACRON - LATIN SMALL LETTER I WITH OGONEK (only %2=1)
{
if (wchar % 2 == 1)
return wchar_t(uint16(wchar)-0x0001);
}
if (wchar >= 0x0430 && wchar <= 0x044F) // CYRILLIC SMALL LETTER A - CYRILLIC SMALL LETTER YA
return wchar_t(uint16(wchar)-0x0020);
if (wchar == 0x0451) // CYRILLIC SMALL LETTER IO
return wchar_t(0x0401);
return wchar;
}
inline wchar_t wcharToUpperOnlyLatin(wchar_t wchar)
{
return isBasicLatinCharacter(wchar) ? wcharToUpper(wchar) : wchar;
}
inline wchar_t wcharToLower(wchar_t wchar)
{
if (wchar >= L'A' && wchar <= L'Z') // LATIN CAPITAL LETTER A - LATIN CAPITAL LETTER Z
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x00C0 && wchar <= 0x00D6) // LATIN CAPITAL LETTER A WITH GRAVE - LATIN CAPITAL LETTER O WITH DIAERESIS
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x00D8 && wchar <= 0x00DE) // LATIN CAPITAL LETTER O WITH STROKE - LATIN CAPITAL LETTER THORN
return wchar_t(uint16(wchar)+0x0020);
if (wchar >= 0x0100 && wchar <= 0x012E) // LATIN CAPITAL LETTER A WITH MACRON - LATIN CAPITAL LETTER I WITH OGONEK (only %2=0)
{
if (wchar % 2 == 0)
return wchar_t(uint16(wchar)+0x0001);
}
if (wchar == 0x1E9E) // LATIN CAPITAL LETTER SHARP S
return wchar_t(0x00DF);
if (wchar == 0x0401) // CYRILLIC CAPITAL LETTER IO
return wchar_t(0x0451);
if (wchar >= 0x0410 && wchar <= 0x042F) // CYRILLIC CAPITAL LETTER A - CYRILLIC CAPITAL LETTER YA
return wchar_t(uint16(wchar)+0x0020);
return wchar;
}
inline void wstrToUpper(std::wstring& str)
{
std::transform( str.begin(), str.end(), str.begin(), wcharToUpper );
}
inline void wstrToLower(std::wstring& str)
{
std::transform( str.begin(), str.end(), str.begin(), wcharToLower );
}
std::wstring GetMainPartOfName(std::wstring wname, uint32 declension);
bool utf8ToConsole(const std::string& utf8str, std::string& conStr);
bool consoleToUtf8(const std::string& conStr, std::string& utf8str);
bool Utf8FitTo(const std::string& str, std::wstring search);
void utf8printf(FILE* out, const char *str, ...);
void vutf8printf(FILE* out, const char *str, va_list* ap);
bool IsIPAddress(char const* ipaddress);
/// Checks if address belongs to the a network with specified submask
bool IsIPAddrInNetwork(ACE_INET_Addr const& net, ACE_INET_Addr const& addr, ACE_INET_Addr const& subnetMask);
/// Transforms ACE_INET_Addr address into string format "dotted_ip:port"
std::string GetAddressString(ACE_INET_Addr const& addr);
uint32 CreatePIDFile(const std::string& filename);
std::string ByteArrayToHexStr(uint8 const* bytes, uint32 length, bool reverse = false);
#endif
//handler for operations on large flags
#ifndef _FLAG96
#define _FLAG96
// simple class for not-modifyable list
template <typename T>
class HookList
{
typedef typename std::list<T>::iterator ListIterator;
private:
typename std::list<T> m_list;
public:
HookList<T> & operator+=(T t)
{
m_list.push_back(t);
return *this;
}
HookList<T> & operator-=(T t)
{
m_list.remove(t);
return *this;
}
size_t size()
{
return m_list.size();
}
ListIterator begin()
{
return m_list.begin();
}
ListIterator end()
{
return m_list.end();
}
};
class flag96
{
private:
uint32 part[3];
public:
flag96(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
flag96(uint64 p1, uint32 p2)
{
part[0] = (uint32)(p1 & UI64LIT(0x00000000FFFFFFFF));
part[1] = (uint32)((p1 >> 32) & UI64LIT(0x00000000FFFFFFFF));
part[2] = p2;
}
inline bool IsEqual(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] == p1 && part[1] == p2 && part[2] == p3);
}
inline bool HasFlag(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0) const
{
return (part[0] & p1 || part[1] & p2 || part[2] & p3);
}
inline void Set(uint32 p1 = 0, uint32 p2 = 0, uint32 p3 = 0)
{
part[0] = p1;
part[1] = p2;
part[2] = p3;
}
inline bool operator <(const flag96 &right) const
{
for (uint8 i = 3; i > 0; --i)
{
if (part[i - 1] < right.part[i - 1])
return true;
else if (part[i - 1] > right.part[i - 1])
return false;
}
return false;
}
inline bool operator ==(const flag96 &right) const
{
return
(
part[0] == right.part[0] &&
part[1] == right.part[1] &&
part[2] == right.part[2]
);
}
inline bool operator !=(const flag96 &right) const
{
return !this->operator ==(right);
}
inline flag96 & operator =(const flag96 &right)
{
part[0] = right.part[0];
part[1] = right.part[1];
part[2] = right.part[2];
return *this;
}
inline flag96 operator &(const flag96 &right) const
{
return flag96(part[0] & right.part[0], part[1] & right.part[1],
part[2] & right.part[2]);
}
inline flag96 & operator &=(const flag96 &right)
{
part[0] &= right.part[0];
part[1] &= right.part[1];
part[2] &= right.part[2];
return *this;
}
inline flag96 operator |(const flag96 &right) const
{
return flag96(part[0] | right.part[0], part[1] | right.part[1],
part[2] | right.part[2]);
}
inline flag96 & operator |=(const flag96 &right)
{
part[0] |= right.part[0];
part[1] |= right.part[1];
part[2] |= right.part[2];
return *this;
}
inline flag96 operator ~() const
{
return flag96(~part[0], ~part[1], ~part[2]);
}
inline flag96 operator ^(const flag96 &right) const
{
return flag96(part[0] ^ right.part[0], part[1] ^ right.part[1],
part[2] ^ right.part[2]);
}
inline flag96 & operator ^=(const flag96 &right)
{
part[0] ^= right.part[0];
part[1] ^= right.part[1];
part[2] ^= right.part[2];
return *this;
}
inline operator bool() const
{
return (part[0] != 0 || part[1] != 0 || part[2] != 0);
}
inline bool operator !() const
{
return !this->operator bool();
}
inline uint32 & operator [](uint8 el)
{
return part[el];
}
inline const uint32 & operator [](uint8 el) const
{
return part[el];
}
};
enum ComparisionType
{
COMP_TYPE_EQ = 0,
COMP_TYPE_HIGH,
COMP_TYPE_LOW,
COMP_TYPE_HIGH_EQ,
COMP_TYPE_LOW_EQ,
COMP_TYPE_MAX
};
template <class T>
bool CompareValues(ComparisionType type, T val1, T val2)
{
switch (type)
{
case COMP_TYPE_EQ:
return val1 == val2;
case COMP_TYPE_HIGH:
return val1 > val2;
case COMP_TYPE_LOW:
return val1 < val2;
case COMP_TYPE_HIGH_EQ:
return val1 >= val2;
case COMP_TYPE_LOW_EQ:
return val1 <= val2;
default:
// incorrect parameter
ASSERT(false);
return false;
}
}
class EventMap
{
typedef std::multimap<uint32, uint32> EventStore;
public:
EventMap() : _time(0), _phase(0) { }
/**
* @name Reset
* @brief Removes all scheduled events and resets time and phase.
*/
void Reset()
{
_eventMap.clear();
_time = 0;
_phase = 0;
}
/**
* @name Update
* @brief Updates the timer of the event map.
* @param time Value to be added to time.
*/
void Update(uint32 time)
{
_time += time;
}
/**
* @name GetTimer
* @return Current timer value.
*/
uint32 GetTimer() const
{
return _time;
}
void SetTimer(uint32 time)
{
_time = time;
}
/**
* @name GetPhaseMask
* @return Active phases as mask.
*/
uint8 GetPhaseMask() const
{
return _phase;
}
/**
* @name Empty
* @return True, if there are no events scheduled.
*/
bool Empty() const
{
return _eventMap.empty();
}
/**
* @name SetPhase
* @brief Sets the phase of the map (absolute).
* @param phase Phase which should be set. Values: 1 - 8. 0 resets phase.
*/
void SetPhase(uint8 phase)
{
if (!phase)
_phase = 0;
else if (phase <= 8)
_phase = (1 << (phase - 1));
}
/**
* @name AddPhase
* @brief Activates the given phase (bitwise).
* @param phase Phase which should be activated. Values: 1 - 8
*/
void AddPhase(uint8 phase)
{
if (phase && phase <= 8)
_phase |= (1 << (phase - 1));
}
/**
* @name RemovePhase
* @brief Deactivates the given phase (bitwise).
* @param phase Phase which should be deactivated. Values: 1 - 8.
*/
void RemovePhase(uint8 phase)
{
if (phase && phase <= 8)
_phase &= ~(1 << (phase - 1));
}
/**
* @name ScheduleEvent
* @brief Creates new event entry in map.
* @param eventId The id of the new event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void ScheduleEvent(uint32 eventId, uint32 time, uint32 group = 0, uint32 phase = 0)
{
if (group && group <= 8)
eventId |= (1 << (group + 15));
if (phase && phase <= 8)
eventId |= (1 << (phase + 23));
_eventMap.insert(EventStore::value_type(_time + time, eventId));
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RescheduleEvent(uint32 eventId, uint32 time, uint32 groupId = 0, uint32 phase = 0)
{
CancelEvent(eventId);
ScheduleEvent(eventId, time, groupId, phase);
}
/**
* @name RescheduleEvent
* @brief Cancels the given event and reschedules it.
* @param eventId The id of the event.
* @param time The time in milliseconds until the event occurs.
* @param group The group which the event is associated to. Has to be between 1 and 8. 0 means it has no group.
* @param phase The phase in which the event can occur. Has to be between 1 and 8. 0 means it can occur in all phases.
*/
void RepeatEvent(uint32 time)
{
if (Empty())
return;
uint32 eventId = _eventMap.begin()->second;
_eventMap.erase(_eventMap.begin());
ScheduleEvent(eventId, time);
}
/**
* @name PopEvent
* @brief Remove the first event in the map.
*/
void PopEvent()
{
if (!Empty())
_eventMap.erase(_eventMap.begin());
}
/**
* @name ExecuteEvent
* @brief Returns the next event to execute and removes it from map.
* @return Id of the event to execute.
*/
uint32 ExecuteEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
return 0;
else if (_phase && (itr->second & 0xFF000000) && !((itr->second >> 24) & _phase))
_eventMap.erase(itr);
else
{
uint32 eventId = (itr->second & 0x0000FFFF);
_eventMap.erase(itr);
return eventId;
}
}
return 0;
}
/**
* @name GetEvent
* @brief Returns the next event to execute.
* @return Id of the event to execute.
*/
uint32 GetEvent()
{
while (!Empty())
{
EventStore::iterator itr = _eventMap.begin();
if (itr->first > _time)
return 0;
else if (_phase && (itr->second & 0xFF000000) && !(itr->second & (_phase << 24)))
_eventMap.erase(itr);
else
return (itr->second & 0x0000FFFF);
}
return 0;
}
/**
* @name DelayEvents
* @brief Delays all events in the map. If delay is greater than or equal internal timer, delay will be 0.
* @param delay Amount of delay.
*/
void DelayEvents(uint32 delay)
{
_time = delay < _time ? _time - delay : 0;
}
void DelayEventsToMax(uint32 delay, uint32 group)
{
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->first < _time+delay && (group == 0 || ((1 << (group + 15)) & itr->second)))
{
ScheduleEvent(itr->second, delay);
_eventMap.erase(itr);
itr = _eventMap.begin();
}
else
++itr;
}
}
/**
* @name DelayEvents
* @brief Delay all events of the same group.
* @param delay Amount of delay.
* @param group Group of the events.
*/
void DelayEvents(uint32 delay, uint32 group)
{
if (group > 8 || Empty())
return;
EventStore delayed;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (!group || (itr->second & (1 << (group + 15))))
{
delayed.insert(EventStore::value_type(itr->first + delay, itr->second));
_eventMap.erase(itr++);
}
else
++itr;
}
_eventMap.insert(delayed.begin(), delayed.end());
}
/**
* @name CancelEvent
* @brief Cancels all events of the specified id.
* @param eventId Event id to cancel.
*/
void CancelEvent(uint32 eventId)
{
if (Empty())
return;
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (eventId == (itr->second & 0x0000FFFF))
_eventMap.erase(itr++);
else
++itr;
}
}
/**
* @name CancelEventGroup
* @brief Cancel events belonging to specified group.
* @param group Group to cancel.
*/
void CancelEventGroup(uint32 group)
{
if (!group || group > 8 || Empty())
return;
uint32 groupMask = (1 << (group + 15));
for (EventStore::iterator itr = _eventMap.begin(); itr != _eventMap.end();)
{
if (itr->second & groupMask)
{
_eventMap.erase(itr);
itr = _eventMap.begin();
}
else
++itr;
}
}
/**
* @name GetNextEventTime
* @brief Returns closest occurence of specified event.
* @param eventId Wanted event id.
* @return Time of found event.
*/
uint32 GetNextEventTime(uint32 eventId) const
{
if (Empty())
return 0;
for (EventStore::const_iterator itr = _eventMap.begin(); itr != _eventMap.end(); ++itr)
if (eventId == (itr->second & 0x0000FFFF))
return itr->first;
return 0;
}
/**
* @name GetNextEventTime
* @return Time of next event.
*/
uint32 GetNextEventTime() const
{
return Empty() ? 0 : _eventMap.begin()->first;
}
/**
* @name IsInPhase
* @brief Returns wether event map is in specified phase or not.
* @param phase Wanted phase.
* @return True, if phase of event map contains specified phase.
*/
bool IsInPhase(uint8 phase)
{
return phase <= 8 && (!phase || _phase & (1 << (phase - 1)));
}
private:
uint32 _time;
uint32 _phase;
EventStore _eventMap;
};
#endif