Big re-organization of repository [W.I.P]

This commit is contained in:
Yehonal
2016-08-11 20:25:27 +02:00
parent c62a72c0a8
commit 0f85ce1c54
3016 changed files with 1271 additions and 1 deletions

View File

@@ -0,0 +1,31 @@
# Copyright (C)
#
# This file is free software; as a special exception the author gives
# unlimited permission to copy and/or distribute it, with or without
# modifications, as long as this notice is preserved.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY, to the extent permitted by law; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
set(Recast_STAT_SRCS
Recast.cpp
RecastAlloc.cpp
RecastArea.cpp
RecastContour.cpp
RecastFilter.cpp
RecastMesh.cpp
RecastMeshDetail.cpp
RecastRasterization.cpp
RecastRegion.cpp
)
if(WIN32)
include_directories(
${CMAKE_SOURCE_DIR}/modules/dep/zlib
)
endif()
add_library(Recast STATIC ${Recast_STAT_SRCS})
target_link_libraries(Recast ${ZLIB_LIBRARIES})

View File

@@ -0,0 +1,423 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
float rcSqrt(float x)
{
return sqrtf(x);
}
void rcContext::log(const rcLogCategory category, const char* format, ...)
{
if (!m_logEnabled)
return;
static const int MSG_SIZE = 512;
char msg[MSG_SIZE];
va_list ap;
va_start(ap, format);
int len = vsnprintf(msg, MSG_SIZE, format, ap);
if (len >= MSG_SIZE)
{
len = MSG_SIZE-1;
msg[MSG_SIZE-1] = '\0';
}
va_end(ap);
doLog(category, msg, len);
}
rcHeightfield* rcAllocHeightfield()
{
rcHeightfield* hf = (rcHeightfield*)rcAlloc(sizeof(rcHeightfield), RC_ALLOC_PERM);
memset(hf, 0, sizeof(rcHeightfield));
return hf;
}
void rcFreeHeightField(rcHeightfield* hf)
{
if (!hf) return;
// Delete span array.
rcFree(hf->spans);
// Delete span pools.
while (hf->pools)
{
rcSpanPool* next = hf->pools->next;
rcFree(hf->pools);
hf->pools = next;
}
rcFree(hf);
}
rcCompactHeightfield* rcAllocCompactHeightfield()
{
rcCompactHeightfield* chf = (rcCompactHeightfield*)rcAlloc(sizeof(rcCompactHeightfield), RC_ALLOC_PERM);
memset(chf, 0, sizeof(rcCompactHeightfield));
return chf;
}
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
{
if (!chf) return;
rcFree(chf->cells);
rcFree(chf->spans);
rcFree(chf->dist);
rcFree(chf->areas);
rcFree(chf);
}
rcContourSet* rcAllocContourSet()
{
rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
memset(cset, 0, sizeof(rcContourSet));
return cset;
}
void rcFreeContourSet(rcContourSet* cset)
{
if (!cset) return;
for (int i = 0; i < cset->nconts; ++i)
{
rcFree(cset->conts[i].verts);
rcFree(cset->conts[i].rverts);
}
rcFree(cset->conts);
rcFree(cset);
}
rcPolyMesh* rcAllocPolyMesh()
{
rcPolyMesh* pmesh = (rcPolyMesh*)rcAlloc(sizeof(rcPolyMesh), RC_ALLOC_PERM);
memset(pmesh, 0, sizeof(rcPolyMesh));
return pmesh;
}
void rcFreePolyMesh(rcPolyMesh* pmesh)
{
if (!pmesh) return;
rcFree(pmesh->verts);
rcFree(pmesh->polys);
rcFree(pmesh->regs);
rcFree(pmesh->flags);
rcFree(pmesh->areas);
rcFree(pmesh);
}
rcPolyMeshDetail* rcAllocPolyMeshDetail()
{
rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
memset(dmesh, 0, sizeof(rcPolyMeshDetail));
return dmesh;
}
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
{
if (!dmesh) return;
rcFree(dmesh->meshes);
rcFree(dmesh->verts);
rcFree(dmesh->tris);
rcFree(dmesh);
}
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
{
// Calculate bounding box.
rcVcopy(bmin, verts);
rcVcopy(bmax, verts);
for (int i = 1; i < nv; ++i)
{
const float* v = &verts[i*3];
rcVmin(bmin, v);
rcVmax(bmax, v);
}
}
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
{
*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
}
bool rcCreateHeightfield(rcContext* /*ctx*/, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
hf.width = width;
hf.height = height;
rcVcopy(hf.bmin, bmin);
rcVcopy(hf.bmax, bmax);
hf.cs = cs;
hf.ch = ch;
hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
if (!hf.spans)
return false;
memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
return true;
}
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
{
float e0[3], e1[3];
rcVsub(e0, v1, v0);
rcVsub(e1, v2, v0);
rcVcross(norm, e0, e1);
rcVnormalize(norm);
}
void rcMarkWalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
const float* verts, int /*nv*/,
const int* tris, int nt,
unsigned char* areas)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
float norm[3];
for (int i = 0; i < nt; ++i)
{
const int* tri = &tris[i*3];
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
// Check if the face is walkable.
if (norm[1] > walkableThr)
areas[i] = RC_WALKABLE_AREA;
}
}
void rcClearUnwalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
const float* verts, int /*nv*/,
const int* tris, int nt,
unsigned char* areas)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
float norm[3];
for (int i = 0; i < nt; ++i)
{
const int* tri = &tris[i*3];
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
// Check if the face is walkable.
if (norm[1] <= walkableThr)
areas[i] = RC_NULL_AREA;
}
}
int rcGetHeightFieldSpanCount(rcContext* /*ctx*/, rcHeightfield& hf)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
const int w = hf.width;
const int h = hf.height;
int spanCount = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
{
if (s->area != RC_NULL_AREA)
spanCount++;
}
}
}
return spanCount;
}
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
const int w = hf.width;
const int h = hf.height;
const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);
// Fill in header.
chf.width = w;
chf.height = h;
chf.spanCount = spanCount;
chf.walkableHeight = walkableHeight;
chf.walkableClimb = walkableClimb;
chf.maxRegions = 0;
rcVcopy(chf.bmin, hf.bmin);
rcVcopy(chf.bmax, hf.bmax);
chf.bmax[1] += walkableHeight*hf.ch;
chf.cs = hf.cs;
chf.ch = hf.ch;
chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
if (!chf.cells)
{
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
return false;
}
memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
if (!chf.spans)
{
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
return false;
}
memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
if (!chf.areas)
{
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
return false;
}
memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
const int MAX_HEIGHT = 0xffff;
// Fill in cells and spans.
int idx = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcSpan* s = hf.spans[x + y*w];
// If there are no spans at this cell, just leave the data to index=0, count=0.
if (!s) continue;
rcCompactCell& c = chf.cells[x+y*w];
c.index = idx;
c.count = 0;
while (s)
{
if (s->area != RC_NULL_AREA)
{
const int bot = (int)s->smax;
const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
chf.areas[idx] = s->area;
idx++;
c.count++;
}
s = s->next;
}
}
}
// Find neighbour connections.
const int MAX_LAYERS = RC_NOT_CONNECTED-1;
int tooHighNeighbour = 0;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
rcCompactSpan& s = chf.spans[i];
for (int dir = 0; dir < 4; ++dir)
{
rcSetCon(s, dir, RC_NOT_CONNECTED);
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
// First check that the neighbour cell is in bounds.
if (nx < 0 || ny < 0 || nx >= w || ny >= h)
continue;
// Iterate over all neighbour spans and check if any of the is
// accessible from current cell.
const rcCompactCell& nc = chf.cells[nx+ny*w];
for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
{
const rcCompactSpan& ns = chf.spans[k];
const int bot = rcMax(s.y, ns.y);
const int top = rcMin(s.y+s.h, ns.y+ns.h);
// Check that the gap between the spans is walkable,
// and that the climb height between the gaps is not too high.
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
{
// Mark direction as walkable.
const int idx = k - (int)nc.index;
if (idx < 0 || idx > MAX_LAYERS)
{
tooHighNeighbour = rcMax(tooHighNeighbour, idx);
continue;
}
rcSetCon(s, dir, idx);
break;
}
}
}
}
}
}
if (tooHighNeighbour > MAX_LAYERS)
{
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
tooHighNeighbour, MAX_LAYERS);
}
ctx->stopTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
return true;
}
/*
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
{
int size = 0;
size += sizeof(hf);
size += hf.width * hf.height * sizeof(rcSpan*);
rcSpanPool* pool = hf.pools;
while (pool)
{
size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
pool = pool->next;
}
return size;
}
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
{
int size = 0;
size += sizeof(rcCompactHeightfield);
size += sizeof(rcCompactSpan) * chf.spanCount;
size += sizeof(rcCompactCell) * chf.width * chf.height;
return size;
}
*/

View File

@@ -0,0 +1,688 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
// Some math headers don't have PI defined.
static const float RC_PI = 3.14159265f;
enum rcLogCategory
{
RC_LOG_PROGRESS = 1,
RC_LOG_WARNING,
RC_LOG_ERROR,
};
enum rcTimerLabel
{
RC_TIMER_TOTAL,
RC_TIMER_TEMP,
RC_TIMER_RASTERIZE_TRIANGLES,
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
RC_TIMER_BUILD_CONTOURS,
RC_TIMER_BUILD_CONTOURS_TRACE,
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
RC_TIMER_FILTER_BORDER,
RC_TIMER_FILTER_WALKABLE,
RC_TIMER_MEDIAN_AREA,
RC_TIMER_FILTER_LOW_OBSTACLES,
RC_TIMER_BUILD_POLYMESH,
RC_TIMER_MERGE_POLYMESH,
RC_TIMER_ERODE_AREA,
RC_TIMER_MARK_BOX_AREA,
RC_TIMER_MARK_CONVEXPOLY_AREA,
RC_TIMER_BUILD_DISTANCEFIELD,
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
RC_TIMER_BUILD_REGIONS,
RC_TIMER_BUILD_REGIONS_WATERSHED,
RC_TIMER_BUILD_REGIONS_EXPAND,
RC_TIMER_BUILD_REGIONS_FLOOD,
RC_TIMER_BUILD_REGIONS_FILTER,
RC_TIMER_BUILD_POLYMESHDETAIL,
RC_TIMER_MERGE_POLYMESHDETAIL,
RC_MAX_TIMERS
};
// Build context provides several optional utilities needed for the build process,
// such as timing, logging, and build time collecting.
class rcContext
{
public:
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
// Enables or disables logging.
inline void enableLog(bool state) { m_logEnabled = state; }
// Resets log.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
// Logs a message.
void log(const rcLogCategory category, const char* format, ...);
// Enables or disables timer.
inline void enableTimer(bool state) { m_timerEnabled = state; }
// Resets all timers.
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
// Starts timer, used for performance timing.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
// Stops timer, used for performance timing.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
// Returns time accumulated between timer start/stop.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
protected:
// Virtual functions to override for custom implementations.
virtual void doResetLog() {}
virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}
virtual void doResetTimers() {}
virtual void doStartTimer(const rcTimerLabel /*label*/) {}
virtual void doStopTimer(const rcTimerLabel /*label*/) {}
virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
bool m_logEnabled;
bool m_timerEnabled;
};
// The units of the parameters are specified in parenthesis as follows:
// (vx) voxels, (wu) world units
struct rcConfig
{
int width, height; // Dimensions of the rasterized heightfield (vx)
int tileSize; // Width and Height of a tile (vx)
int borderSize; // Non-navigable Border around the heightfield (vx)
float cs, ch; // Grid cell size and height (wu)
float bmin[3], bmax[3]; // Grid bounds (wu)
float walkableSlopeAngle; // Maximum walkable slope angle in degrees.
int walkableHeight; // Minimum height where the agent can still walk (vx)
int walkableClimb; // Maximum height between grid cells the agent can climb (vx)
int walkableRadius; // Radius of the agent in cells (vx)
int maxEdgeLen; // Maximum contour edge length (vx)
float maxSimplificationError; // Maximum distance error from contour to cells (vx)
int minRegionArea; // Regions whose area is smaller than this threshold will be removed. (vx)
int mergeRegionArea; // Regions whose area is smaller than this threshold will be merged (vx)
int maxVertsPerPoly; // Max number of vertices per polygon
float detailSampleDist; // Detail mesh sample spacing.
float detailSampleMaxError; // Detail mesh simplification max sample error.
};
// Define number of bits in the above structure for smin/smax.
// The max height is used for clamping rasterized values.
static const int RC_SPAN_HEIGHT_BITS = 16;
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;
// Heightfield span.
struct rcSpan
{
unsigned int smin : 16; // Span min height.
unsigned int smax : 16; // Span max height.
unsigned char area; // Span area type.
rcSpan* next; // Next span in column.
};
// Number of spans allocated per pool.
static const int RC_SPANS_PER_POOL = 2048;
// Memory pool used for quick span allocation.
struct rcSpanPool
{
rcSpanPool* next; // Pointer to next pool.
rcSpan items[RC_SPANS_PER_POOL]; // Array of spans.
};
// Dynamic span-heightfield.
struct rcHeightfield
{
int width, height; // Dimension of the heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield
float cs, ch; // Cell size and height.
rcSpan** spans; // Heightfield of spans (width*height).
rcSpanPool* pools; // Linked list of span pools.
rcSpan* freelist; // Pointer to next free span.
};
rcHeightfield* rcAllocHeightfield();
void rcFreeHeightField(rcHeightfield* hf);
struct rcCompactCell
{
unsigned int index : 24; // Index to first span in column.
unsigned int count : 8; // Number of spans in this column.
};
struct rcCompactSpan
{
unsigned short y; // Bottom coordinate of the span.
unsigned short reg;
unsigned int con : 24; // Connections to neighbour cells.
unsigned int h : 8; // Height of the span.
};
// Compact static heightfield.
struct rcCompactHeightfield
{
int width, height; // Width and height of the heightfield.
int spanCount; // Number of spans in the heightfield.
int walkableHeight, walkableClimb; // Agent properties.
unsigned short maxDistance; // Maximum distance value stored in heightfield.
unsigned short maxRegions; // Maximum Region Id stored in heightfield.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
rcCompactCell* cells; // Pointer to width*height cells.
rcCompactSpan* spans; // Pointer to spans.
unsigned short* dist; // Pointer to per span distance to border.
unsigned char* areas; // Pointer to per span area ID.
};
rcCompactHeightfield* rcAllocCompactHeightfield();
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
struct rcContour
{
int* verts; // Vertex coordinates, each vertex contains 4 components.
int nverts; // Number of vertices.
int* rverts; // Raw vertex coordinates, each vertex contains 4 components.
int nrverts; // Number of raw vertices.
unsigned short reg; // Region ID of the contour.
unsigned char area; // Area ID of the contour.
};
struct rcContourSet
{
rcContour* conts; // Pointer to all contours.
int nconts; // Number of contours.
float bmin[3], bmax[3]; // Bounding box of the heightfield.
float cs, ch; // Cell size and height.
};
rcContourSet* rcAllocContourSet();
void rcFreeContourSet(rcContourSet* cset);
// Polymesh store a connected mesh of polygons.
// The polygons are store in an array where each polygons takes
// 'nvp*2' elements. The first 'nvp' elements are indices to vertices
// and the second 'nvp' elements are indices to neighbour polygons.
// If a polygon has less than 'bvp' vertices, the remaining indices
// are set to RC_MESH_NULL_IDX. If an polygon edge does not have a neighbour
// the neighbour index is set to RC_MESH_NULL_IDX.
// Vertices can be transformed into world space as follows:
// x = bmin[0] + verts[i*3+0]*cs;
// y = bmin[1] + verts[i*3+1]*ch;
// z = bmin[2] + verts[i*3+2]*cs;
struct rcPolyMesh
{
unsigned short* verts; // Vertices of the mesh, 3 elements per vertex.
unsigned short* polys; // Polygons of the mesh, nvp*2 elements per polygon.
unsigned short* regs; // Region ID of the polygons.
unsigned short* flags; // Per polygon flags.
unsigned char* areas; // Area ID of polygons.
int nverts; // Number of vertices.
int npolys; // Number of polygons.
int maxpolys; // Number of allocated polygons.
int nvp; // Max number of vertices per polygon.
float bmin[3], bmax[3]; // Bounding box of the mesh.
float cs, ch; // Cell size and height.
};
rcPolyMesh* rcAllocPolyMesh();
void rcFreePolyMesh(rcPolyMesh* pmesh);
// Detail mesh generated from a rcPolyMesh.
// Each submesh represents a polygon in the polymesh and they are stored in
// exactly same order. Each submesh is described as 4 values:
// base vertex, vertex count, base triangle, triangle count. That is,
// const unsigned char* t = &dmesh.tris[(tbase+i)*3]; and
// const float* v = &dmesh.verts[(vbase+t[j])*3];
// If the input polygon has 'n' vertices, those vertices are first in the
// submesh vertex list. This allows to compres the mesh by not storing the
// first vertices and using the polymesh vertices instead.
// Max number of vertices per submesh is 127 and
// max number of triangles per submesh is 255.
struct rcPolyMeshDetail
{
unsigned int* meshes; // Pointer to all mesh data.
float* verts; // Pointer to all vertex data.
unsigned char* tris; // Pointer to all triangle data.
int nmeshes; // Number of meshes.
int nverts; // Number of total vertices.
int ntris; // Number of triangles.
};
rcPolyMeshDetail* rcAllocPolyMeshDetail();
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
// If heightfield region ID has the following bit set, the region is on border area
// and excluded from many calculations.
static const unsigned short RC_BORDER_REG = 0x8000;
// If contour region ID has the following bit set, the vertex will be later
// removed in order to match the segments and vertices at tile boundaries.
static const int RC_BORDER_VERTEX = 0x10000;
static const int RC_AREA_BORDER = 0x20000;
enum rcBuildContoursFlags
{
RC_CONTOUR_TESS_WALL_EDGES = 0x01, // Tessellate wall edges
RC_CONTOUR_TESS_AREA_EDGES = 0x02, // Tessellate edges between areas.
};
// Mask used with contours to extract region id.
static const int RC_CONTOUR_REG_MASK = 0xffff;
// Null index which is used with meshes to mark unset or invalid indices.
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
// Area ID that is considered empty.
static const unsigned char RC_NULL_AREA = 0;
// Area ID that is considered generally walkable.
static const unsigned char RC_WALKABLE_AREA = 63;
// Value returned by rcGetCon() if the direction is not connected.
static const int RC_NOT_CONNECTED = 0x3f;
// Compact span neighbour helpers.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
unsigned int con = s.con;
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
return (s.con >> shift) & 0x3f;
}
inline int rcGetDirOffsetX(int dir)
{
const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
inline int rcGetDirOffsetY(int dir)
{
const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
// Common helper functions
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
template<class T> inline T rcSqr(T a) { return a*a; }
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
float rcSqrt(float x);
// Common vector helper functions.
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return rcSqrt(dx*dx + dy*dy + dz*dz);
}
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
inline bool rcVequal(const float* p0, const float* p1)
{
static const float thr = rcSqr(1.0f/16384.0f);
const float d = rcVdistSqr(p0, p1);
return d < thr;
}
// Calculated bounding box of array of vertices.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// bmin, bmax - (out) bounding box
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
// Calculates grid size based on bounding box and grid cell size.
// Params:
// bmin, bmax - (in) bounding box
// cs - (in) grid cell size
// w - (out) grid width
// h - (out) grid height
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
// Creates and initializes new heightfield.
// Params:
// hf - (in/out) heightfield to initialize.
// width - (in) width of the heightfield.
// height - (in) height of the heightfield.
// bmin, bmax - (in) bounding box of the heightfield
// cs - (in) grid cell size
// ch - (in) grid cell height
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
// Sets the RC_WALKABLE_AREA for every triangle whose slope is below
// the maximum walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximum slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// areas - (out) array of triangle area types
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
// Sets the RC_NULL_AREA for every triangle whose slope is steeper than
// the maximum walkable slope angle.
// Params:
// walkableSlopeAngle - (in) maximum slope angle in degrees.
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// nt - (in) triangle count
// areas - (out) array of triangle are types
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
// Adds span to heightfield.
// The span addition can set to favor flags. If the span is merged to
// another span and the new smax is within 'flagMergeThr' units away
// from the existing span the span flags are merged and stored.
// Params:
// solid - (in) heightfield where the spans is added to
// x,y - (in) location on the heightfield where the span is added
// smin,smax - (in) spans min/max height
// flags - (in) span flags (zero or WALKABLE)
// flagMergeThr - (in) merge threshold.
void rcAddSpan(rcContext* ctx, rcHeightfield& solid, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned short area, const int flagMergeThr);
// Rasterizes a triangle into heightfield spans.
// Params:
// v0,v1,v2 - (in) the vertices of the triangle.
// area - (in) area type of the triangle.
// solid - (in) heightfield where the triangle is rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
// Rasterizes indexed triangle mesh into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Rasterizes indexed triangle mesh into heightfield spans.
// Params:
// verts - (in) array of vertices
// nv - (in) vertex count
// tris - (in) array of triangle vertex indices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
// flagMergeThr - (in) distance in voxel where walkable flag is favored over non-walkable.
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Rasterizes the triangles into heightfield spans.
// Params:
// verts - (in) array of vertices
// area - (in) array of triangle area types.
// nt - (in) triangle count
// solid - (in) heightfield where the triangles are rasterized
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
// Marks non-walkable low obstacles as walkable if they are closer than walkableClimb
// from a walkable surface. Applying this filter allows to step over low hanging
// low obstacles.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
// TODO: Missuses ledge flag, must be called before rcFilterLedgeSpans!
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
// Removes WALKABLE flag from all spans that are at ledges. This filtering
// removes possible overestimation of the conservative voxelization so that
// the resulting mesh will not have regions hanging in air over ledges.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// solid - (in/out) heightfield describing the solid space
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
// Removes WALKABLE flag from all spans which have smaller than
// 'walkableHeight' clearance above them.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// solid - (in/out) heightfield describing the solid space
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
// Returns number of spans contained in a heightfield.
// Params:
// hf - (in) heightfield to be compacted
// Returns number of spans.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
// Builds compact representation of the heightfield.
// Params:
// walkableHeight - (in) minimum height where the agent can still walk
// walkableClimb - (in) maximum height between grid cells the agent can climb
// flags - (in) require flags for a cell to be included in the compact heightfield.
// hf - (in) heightfield to be compacted
// chf - (out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
// Erodes walkable area.
// Params:
// radius - (in) radius of erosion (max 255).
// chf - (in/out) compact heightfield to erode.
// Returns false if operation ran out of memory.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
// Applies median filter to walkable area types, removing noise.
// Params:
// chf - (in/out) compact heightfield to erode.
// Returns false if operation ran out of memory.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
// Marks the area of the convex polygon into the area type of the compact heightfield.
// Params:
// bmin/bmax - (in) bounds of the axis aligned box.
// areaId - (in) area ID to mark.
// chf - (in/out) compact heightfield to mark.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
// Marks the area of the convex polygon into the area type of the compact heightfield.
// Params:
// verts - (in) vertices of the convex polygon.
// nverts - (in) number of vertices in the polygon.
// hmin/hmax - (in) min and max height of the polygon.
// areaId - (in) area ID to mark.
// chf - (in/out) compact heightfield to mark.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
// Builds distance field and stores it into the combat heightfield.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// Returns false if operation ran out of memory.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
// Divides the walkable heighfied into simple regions using watershed partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The process sometimes creates small regions. If the area of a regions is
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
// region if possible. If multiple regions form an area which is smaller than
// 'minRegionArea' all the regions belonging to that area will be removed.
// Here area means the count of spans in an area.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// minRegionArea - (in) the smallest allowed region area.
// maxMergeRegionArea - (in) the largest allowed region area which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
// Divides the walkable heighfied into simple regions using simple monotone partitioning.
// Each region has only one contour and no overlaps.
// The regions are stored in the compact heightfield 'reg' field.
// The process sometimes creates small regions. If the area of a regions is
// smaller than 'mergeRegionArea' then the region will be merged with a neighbour
// region if possible. If multiple regions form an area which is smaller than
// 'minRegionArea' all the regions belonging to that area will be removed.
// Here area means the count of spans in an area.
// Params:
// chf - (in/out) compact heightfield representing the open space.
// minRegionArea - (in) the smallest allowed regions size.
// maxMergeRegionArea - (in) the largest allowed regions size which can be merged.
// Returns false if operation ran out of memory.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
// Builds simplified contours from the regions outlines.
// Params:
// chf - (in) compact heightfield which has regions set.
// maxError - (in) maximum allowed distance between simplified contour and cells.
// maxEdgeLen - (in) maximum allowed contour edge length in cells.
// cset - (out) Resulting contour set.
// flags - (in) build flags, see rcBuildContoursFlags.
// Returns false if operation ran out of memory.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int flags = RC_CONTOUR_TESS_WALL_EDGES);
// Builds connected convex polygon mesh from contour polygons.
// Params:
// cset - (in) contour set.
// nvp - (in) maximum number of vertices per polygon.
// mesh - (out) poly mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, int nvp, rcPolyMesh& mesh);
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
// Builds detail triangle mesh for each polygon in the poly mesh.
// Params:
// mesh - (in) poly mesh to detail.
// chf - (in) compact height field, used to query height for new vertices.
// sampleDist - (in) spacing between height samples used to generate more detail into mesh.
// sampleMaxError - (in) maximum allowed distance between simplified detail mesh and height sample.
// pmdtl - (out) detail mesh.
// Returns false if operation ran out of memory.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
#endif // RECAST_H

View File

@@ -0,0 +1,67 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <stdlib.h>
#include <string.h>
#include "RecastAlloc.h"
static void *rcAllocDefault(int size, rcAllocHint)
{
return malloc(size);
}
static void rcFreeDefault(void *ptr)
{
free(ptr);
}
static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
{
sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
}
void* rcAlloc(int size, rcAllocHint hint)
{
return sRecastAllocFunc(size, hint);
}
void rcFree(void* ptr)
{
if (ptr)
sRecastFreeFunc(ptr);
}
void rcIntArray::resize(int n)
{
if (n > m_cap)
{
if (!m_cap) m_cap = n;
while (m_cap < n) m_cap *= 2;
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
rcFree(m_data);
m_data = newData;
}
m_size = n;
}

View File

@@ -0,0 +1,69 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECASTALLOC_H
#define RECASTALLOC_H
enum rcAllocHint
{
RC_ALLOC_PERM, // Memory persist after a function call.
RC_ALLOC_TEMP // Memory used temporarily within a function.
};
typedef void* (rcAllocFunc)(int size, rcAllocHint hint);
typedef void (rcFreeFunc)(void* ptr);
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
void* rcAlloc(int size, rcAllocHint hint);
void rcFree(void* ptr);
// Simple dynamic array ints.
class rcIntArray
{
int* m_data;
int m_size, m_cap;
inline rcIntArray(const rcIntArray&);
inline rcIntArray& operator=(const rcIntArray&);
public:
inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
inline ~rcIntArray() { rcFree(m_data); }
void resize(int n);
inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
inline const int& operator[](int i) const { return m_data[i]; }
inline int& operator[](int i) { return m_data[i]; }
inline int size() const { return m_size; }
};
// Simple internal helper class to delete array in scope
template<class T> class rcScopedDelete
{
T* ptr;
inline T* operator=(T* p);
public:
inline rcScopedDelete() : ptr(0) {}
inline rcScopedDelete(T* p) : ptr(p) {}
inline ~rcScopedDelete() { rcFree(ptr); }
inline operator T*() { return ptr; }
};
#endif

View File

@@ -0,0 +1,416 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
{
rcAssert(ctx);
const int w = chf.width;
const int h = chf.height;
ctx->startTimer(RC_TIMER_ERODE_AREA);
unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
if (!dist)
{
ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", chf.spanCount);
return false;
}
// Init distance.
memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount);
// Mark boundary cells.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.areas[i] != RC_NULL_AREA)
{
const rcCompactSpan& s = chf.spans[i];
int nc = 0;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
nc++;
}
// At least one missing neighbour.
if (nc != 4)
dist[i] = 0;
}
}
}
}
unsigned char nd;
// Pass 1
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
{
// (-1,0)
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
const rcCompactSpan& as = chf.spans[ai];
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
if (nd < dist[i])
dist[i] = nd;
// (-1,-1)
if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
{
const int aax = ax + rcGetDirOffsetX(3);
const int aay = ay + rcGetDirOffsetY(3);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
if (nd < dist[i])
dist[i] = nd;
}
}
if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
{
// (0,-1)
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
const rcCompactSpan& as = chf.spans[ai];
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
if (nd < dist[i])
dist[i] = nd;
// (1,-1)
if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
{
const int aax = ax + rcGetDirOffsetX(2);
const int aay = ay + rcGetDirOffsetY(2);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
if (nd < dist[i])
dist[i] = nd;
}
}
}
}
}
// Pass 2
for (int y = h-1; y >= 0; --y)
{
for (int x = w-1; x >= 0; --x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
{
// (1,0)
const int ax = x + rcGetDirOffsetX(2);
const int ay = y + rcGetDirOffsetY(2);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
const rcCompactSpan& as = chf.spans[ai];
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
if (nd < dist[i])
dist[i] = nd;
// (1,1)
if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
{
const int aax = ax + rcGetDirOffsetX(1);
const int aay = ay + rcGetDirOffsetY(1);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
if (nd < dist[i])
dist[i] = nd;
}
}
if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
{
// (0,1)
const int ax = x + rcGetDirOffsetX(1);
const int ay = y + rcGetDirOffsetY(1);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
const rcCompactSpan& as = chf.spans[ai];
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
if (nd < dist[i])
dist[i] = nd;
// (-1,1)
if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
{
const int aax = ax + rcGetDirOffsetX(0);
const int aay = ay + rcGetDirOffsetY(0);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
if (nd < dist[i])
dist[i] = nd;
}
}
}
}
}
const unsigned char thr = (unsigned char)(radius*2);
for (int i = 0; i < chf.spanCount; ++i)
if (dist[i] < thr)
chf.areas[i] = RC_NULL_AREA;
rcFree(dist);
ctx->stopTimer(RC_TIMER_ERODE_AREA);
return true;
}
static void insertSort(unsigned char* a, const int n)
{
int i, j;
for (i = 1; i < n; i++)
{
const unsigned char value = a[i];
for (j = i - 1; j >= 0 && a[j] > value; j--)
a[j+1] = a[j];
a[j+1] = value;
}
}
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
{
rcAssert(ctx);
const int w = chf.width;
const int h = chf.height;
ctx->startTimer(RC_TIMER_MEDIAN_AREA);
unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
if (!areas)
{
ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).", chf.spanCount);
return false;
}
// Init distance.
memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (chf.areas[i] == RC_NULL_AREA)
{
areas[i] = chf.areas[i];
continue;
}
unsigned char nei[9];
for (int j = 0; j < 9; ++j)
nei[j] = chf.areas[i];
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
if (chf.areas[ai] != RC_NULL_AREA)
nei[dir*2+0] = chf.areas[ai];
const rcCompactSpan& as = chf.spans[ai];
const int dir2 = (dir+1) & 0x3;
if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
{
const int ax2 = ax + rcGetDirOffsetX(dir2);
const int ay2 = ay + rcGetDirOffsetY(dir2);
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
if (chf.areas[ai2] != RC_NULL_AREA)
nei[dir*2+1] = chf.areas[ai2];
}
}
}
insertSort(nei, 9);
areas[i] = nei[4];
}
}
}
memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount);
rcFree(areas);
ctx->stopTimer(RC_TIMER_MEDIAN_AREA);
return true;
}
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MARK_BOX_AREA);
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
if (maxx < 0) return;
if (minx >= chf.width) return;
if (maxz < 0) return;
if (minz >= chf.height) return;
if (minx < 0) minx = 0;
if (maxx >= chf.width) maxx = chf.width-1;
if (minz < 0) minz = 0;
if (maxz >= chf.height) maxz = chf.height-1;
for (int z = minz; z <= maxz; ++z)
{
for (int x = minx; x <= maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+z*chf.width];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
rcCompactSpan& s = chf.spans[i];
if ((int)s.y >= miny && (int)s.y <= maxy)
{
if (chf.areas[i] != RC_NULL_AREA)
chf.areas[i] = areaId;
}
}
}
}
ctx->stopTimer(RC_TIMER_MARK_BOX_AREA);
}
static int pointInPoly(int nvert, const float* verts, const float* p)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
{
const float* vi = &verts[i*3];
const float* vj = &verts[j*3];
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
c = !c;
}
return c;
}
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MARK_CONVEXPOLY_AREA);
float bmin[3], bmax[3];
rcVcopy(bmin, verts);
rcVcopy(bmax, verts);
for (int i = 1; i < nverts; ++i)
{
rcVmin(bmin, &verts[i*3]);
rcVmax(bmax, &verts[i*3]);
}
bmin[1] = hmin;
bmax[1] = hmax;
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
if (maxx < 0) return;
if (minx >= chf.width) return;
if (maxz < 0) return;
if (minz >= chf.height) return;
if (minx < 0) minx = 0;
if (maxx >= chf.width) maxx = chf.width-1;
if (minz < 0) minz = 0;
if (maxz >= chf.height) maxz = chf.height-1;
// TODO: Optimize.
for (int z = minz; z <= maxz; ++z)
{
for (int x = minx; x <= maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+z*chf.width];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
rcCompactSpan& s = chf.spans[i];
if (chf.areas[i] == RC_NULL_AREA)
continue;
if ((int)s.y >= miny && (int)s.y <= maxy)
{
float p[3];
p[0] = chf.bmin[0] + (x+0.5f)*chf.cs;
p[1] = 0;
p[2] = chf.bmin[2] + (z+0.5f)*chf.cs;
if (pointInPoly(nverts, verts, p))
{
chf.areas[i] = areaId;
}
}
}
}
}
ctx->stopTimer(RC_TIMER_MARK_CONVEXPOLY_AREA);
}

View File

@@ -0,0 +1,33 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECASTASSERT_H
#define RECASTASSERT_H
// Note: This header file's only purpose is to include define assert.
// Feel free to change the file and include your own implementation instead.
#ifdef NDEBUG
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
# define rcAssert(x) do { (void)sizeof(x); } while(__LINE__==-1,false)
#else
# include <assert.h>
# define rcAssert assert
#endif
#endif // RECASTASSERT_H

View File

@@ -0,0 +1,802 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
static int getCornerHeight(int x, int y, int i, int dir,
const rcCompactHeightfield& chf,
bool& isBorderVertex)
{
const rcCompactSpan& s = chf.spans[i];
int ch = (int)s.y;
int dirp = (dir+1) & 0x3;
unsigned int regs[4] = {0,0,0,0};
// Combine region and area codes in order to prevent
// border vertices which are in between two areas to be removed.
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
const rcCompactSpan& as = chf.spans[ai];
ch = rcMax(ch, (int)as.y);
regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16);
if (rcGetCon(as, dirp) != RC_NOT_CONNECTED)
{
const int ax2 = ax + rcGetDirOffsetX(dirp);
const int ay2 = ay + rcGetDirOffsetY(dirp);
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp);
const rcCompactSpan& as2 = chf.spans[ai2];
ch = rcMax(ch, (int)as2.y);
regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
}
}
if (rcGetCon(s, dirp) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dirp);
const int ay = y + rcGetDirOffsetY(dirp);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp);
const rcCompactSpan& as = chf.spans[ai];
ch = rcMax(ch, (int)as.y);
regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16);
if (rcGetCon(as, dir) != RC_NOT_CONNECTED)
{
const int ax2 = ax + rcGetDirOffsetX(dir);
const int ay2 = ay + rcGetDirOffsetY(dir);
const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir);
const rcCompactSpan& as2 = chf.spans[ai2];
ch = rcMax(ch, (int)as2.y);
regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16);
}
}
// Check if the vertex is special edge vertex, these vertices will be removed later.
for (int j = 0; j < 4; ++j)
{
const int a = j;
const int b = (j+1) & 0x3;
const int c = (j+2) & 0x3;
const int d = (j+3) & 0x3;
// The vertex is a border vertex there are two same exterior cells in a row,
// followed by two interior cells and none of the regions are out of bounds.
const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b];
const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0;
const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16);
const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0;
if (twoSameExts && twoInts && intsSameArea && noZeros)
{
isBorderVertex = true;
break;
}
}
return ch;
}
static void walkContour(int x, int y, int i,
rcCompactHeightfield& chf,
unsigned char* flags, rcIntArray& points)
{
// Choose the first non-connected edge
unsigned char dir = 0;
while ((flags[i] & (1 << dir)) == 0)
dir++;
unsigned char startDir = dir;
int starti = i;
const unsigned char area = chf.areas[i];
int iter = 0;
while (++iter < 40000)
{
if (flags[i] & (1 << dir))
{
// Choose the edge corner
bool isBorderVertex = false;
bool isAreaBorder = false;
int px = x;
int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex);
int pz = y;
switch(dir)
{
case 0: pz++; break;
case 1: px++; pz++; break;
case 2: px++; break;
}
int r = 0;
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = (int)chf.spans[ai].reg;
if (area != chf.areas[ai])
isAreaBorder = true;
}
if (isBorderVertex)
r |= RC_BORDER_VERTEX;
if (isAreaBorder)
r |= RC_AREA_BORDER;
points.push(px);
points.push(py);
points.push(pz);
points.push(r);
flags[i] &= ~(1 << dir); // Remove visited edges
dir = (dir+1) & 0x3; // Rotate CW
}
else
{
int ni = -1;
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
ni = (int)nc.index + rcGetCon(s, dir);
}
if (ni == -1)
{
// Should not happen.
return;
}
x = nx;
y = ny;
i = ni;
dir = (dir+3) & 0x3; // Rotate CCW
}
if (starti == i && startDir == dir)
{
break;
}
}
}
static float distancePtSeg(const int x, const int z,
const int px, const int pz,
const int qx, const int qz)
{
/* float pqx = (float)(qx - px);
float pqy = (float)(qy - py);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dy = (float)(y - py);
float dz = (float)(z - pz);
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dy = py + t*pqy - y;
dz = pz + t*pqz - z;
return dx*dx + dy*dy + dz*dz;*/
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dz = (float)(z - pz);
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dz = pz + t*pqz - z;
return dx*dx + dz*dz;
}
static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
const float maxError, const int maxEdgeLen, const int buildFlags)
{
// Add initial points.
bool hasConnections = false;
for (int i = 0; i < points.size(); i += 4)
{
if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0)
{
hasConnections = true;
break;
}
}
if (hasConnections)
{
// The contour has some portals to other regions.
// Add a new point to every location where the region changes.
for (int i = 0, ni = points.size()/4; i < ni; ++i)
{
int ii = (i+1) % ni;
const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK);
const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER);
if (differentRegs || areaBorders)
{
simplified.push(points[i*4+0]);
simplified.push(points[i*4+1]);
simplified.push(points[i*4+2]);
simplified.push(i);
}
}
}
if (simplified.size() == 0)
{
// If there is no connections at all,
// create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
int llz = points[2];
int lli = 0;
int urx = points[0];
int ury = points[1];
int urz = points[2];
int uri = 0;
for (int i = 0; i < points.size(); i += 4)
{
int x = points[i+0];
int y = points[i+1];
int z = points[i+2];
if (x < llx || (x == llx && z < llz))
{
llx = x;
lly = y;
llz = z;
lli = i/4;
}
if (x > urx || (x == urx && z > urz))
{
urx = x;
ury = y;
urz = z;
uri = i/4;
}
}
simplified.push(llx);
simplified.push(lly);
simplified.push(llz);
simplified.push(lli);
simplified.push(urx);
simplified.push(ury);
simplified.push(urz);
simplified.push(uri);
}
// Add points until all raw points are within
// error tolerance to the simplified shape.
const int pn = points.size()/4;
for (int i = 0; i < simplified.size()/4; )
{
int ii = (i+1) % (simplified.size()/4);
const int ax = simplified[i*4+0];
const int az = simplified[i*4+2];
const int ai = simplified[i*4+3];
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
float maxd = 0;
int maxi = -1;
int ci, cinc, endi;
// Traverse the segment in lexilogical order so that the
// max deviation is calculated similarly when traversing
// opposite segments.
if (bx > ax || (bx == ax && bz > az))
{
cinc = 1;
ci = (ai+cinc) % pn;
endi = bi;
}
else
{
cinc = pn-1;
ci = (bi+cinc) % pn;
endi = ai;
}
// Tessellate only outer edges oredges between areas.
if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
(points[ci*4+3] & RC_AREA_BORDER))
{
while (ci != endi)
{
float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz);
if (d > maxd)
{
maxd = d;
maxi = ci;
}
ci = (ci+cinc) % pn;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1 && maxd > (maxError*maxError))
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
const int n = simplified.size()/4;
for (int j = n-1; j > i; --j)
{
simplified[j*4+0] = simplified[(j-1)*4+0];
simplified[j*4+1] = simplified[(j-1)*4+1];
simplified[j*4+2] = simplified[(j-1)*4+2];
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
++i;
}
}
// Split too long edges.
if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0)
{
for (int i = 0; i < simplified.size()/4; )
{
const int ii = (i+1) % (simplified.size()/4);
const int ax = simplified[i*4+0];
const int az = simplified[i*4+2];
const int ai = simplified[i*4+3];
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
int maxi = -1;
int ci = (ai+1) % pn;
// Tessellate only outer edges or edges between areas.
bool tess = false;
// Wall edges.
if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0)
tess = true;
// Edges between areas.
if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER))
tess = true;
if (tess)
{
int dx = bx - ax;
int dz = bz - az;
if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen)
{
// Round based on the segments in lexilogical order so that the
// max tesselation is consistent regardles in which direction
// segments are traversed.
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
if (n > 1)
{
if (bx > ax || (bx == ax && bz > az))
maxi = (ai + n/2) % pn;
else
maxi = (ai + (n+1)/2) % pn;
}
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1)
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
const int n = simplified.size()/4;
for (int j = n-1; j > i; --j)
{
simplified[j*4+0] = simplified[(j-1)*4+0];
simplified[j*4+1] = simplified[(j-1)*4+1];
simplified[j*4+2] = simplified[(j-1)*4+2];
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
++i;
}
}
}
for (int i = 0; i < simplified.size()/4; ++i)
{
// The edge vertex flag is take from the current raw point,
// and the neighbour region is take from the next raw point.
const int ai = (simplified[i*4+3]+1) % pn;
const int bi = simplified[i*4+3];
simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
}
}
static void removeDegenerateSegments(rcIntArray& simplified)
{
// Remove adjacent vertices which are equal on xz-plane,
// or else the triangulator will get confused.
for (int i = 0; i < simplified.size()/4; ++i)
{
int ni = i+1;
if (ni >= (simplified.size()/4))
ni = 0;
if (simplified[i*4+0] == simplified[ni*4+0] &&
simplified[i*4+2] == simplified[ni*4+2])
{
// Degenerate segment, remove.
for (int j = i; j < simplified.size()/4-1; ++j)
{
simplified[j*4+0] = simplified[(j+1)*4+0];
simplified[j*4+1] = simplified[(j+1)*4+1];
simplified[j*4+2] = simplified[(j+1)*4+2];
simplified[j*4+3] = simplified[(j+1)*4+3];
}
simplified.resize(simplified.size()-4);
}
}
}
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
int area = 0;
for (int i = 0, j = nverts-1; i < nverts; j=i++)
{
const int* vi = &verts[i*4];
const int* vj = &verts[j*4];
area += vi[0] * vj[2] - vj[0] * vi[2];
}
return (area+1) / 2;
}
inline bool ileft(const int* a, const int* b, const int* c)
{
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
}
static void getClosestIndices(const int* vertsa, const int nvertsa,
const int* vertsb, const int nvertsb,
int& ia, int& ib)
{
int closestDist = 0xfffffff;
ia = -1, ib = -1;
for (int i = 0; i < nvertsa; ++i)
{
const int in = (i+1) % nvertsa;
const int ip = (i+nvertsa-1) % nvertsa;
const int* va = &vertsa[i*4];
const int* van = &vertsa[in*4];
const int* vap = &vertsa[ip*4];
for (int j = 0; j < nvertsb; ++j)
{
const int* vb = &vertsb[j*4];
// vb must be "infront" of va.
if (ileft(vap,va,vb) && ileft(va,van,vb))
{
const int dx = vb[0] - va[0];
const int dz = vb[2] - va[2];
const int d = dx*dx + dz*dz;
if (d < closestDist)
{
ia = i;
ib = j;
closestDist = d;
}
}
}
}
}
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
const int maxVerts = ca.nverts + cb.nverts + 2;
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
if (!verts)
return false;
int nv = 0;
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
int* dst = &verts[nv*4];
const int* src = &ca.verts[((ia+i)%ca.nverts)*4];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
nv++;
}
// Copy contour B
for (int i = 0; i <= cb.nverts; ++i)
{
int* dst = &verts[nv*4];
const int* src = &cb.verts[((ib+i)%cb.nverts)*4];
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
nv++;
}
rcFree(ca.verts);
ca.verts = verts;
ca.nverts = nv;
rcFree(cb.verts);
cb.verts = 0;
cb.nverts = 0;
return true;
}
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int buildFlags)
{
rcAssert(ctx);
const int w = chf.width;
const int h = chf.height;
ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
rcVcopy(cset.bmin, chf.bmin);
rcVcopy(cset.bmax, chf.bmax);
cset.cs = chf.cs;
cset.ch = chf.ch;
int maxContours = rcMax((int)chf.maxRegions, 8);
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
if (!cset.conts)
return false;
cset.nconts = 0;
rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
if (!flags)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
return false;
}
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
// Mark boundaries.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
unsigned char res = 0;
const rcCompactSpan& s = chf.spans[i];
if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG))
{
flags[i] = 0;
continue;
}
for (int dir = 0; dir < 4; ++dir)
{
unsigned short r = 0;
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
r = chf.spans[ai].reg;
}
if (r == chf.spans[i].reg)
res |= (1 << dir);
}
flags[i] = res ^ 0xf; // Inverse, mark non connected edges.
}
}
}
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
rcIntArray verts(256);
rcIntArray simplified(64);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (flags[i] == 0 || flags[i] == 0xf)
{
flags[i] = 0;
continue;
}
const unsigned short reg = chf.spans[i].reg;
if (!reg || (reg & RC_BORDER_REG))
continue;
const unsigned char area = chf.areas[i];
verts.resize(0);
simplified.resize(0);
walkContour(x, y, i, chf, flags, verts);
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
removeDegenerateSegments(simplified);
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
{
if (cset.nconts >= maxContours)
{
// Allocate more contours.
// This can happen when there are tiny holes in the heightfield.
const int oldMax = maxContours;
maxContours *= 2;
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
for (int j = 0; j < cset.nconts; ++j)
{
newConts[j] = cset.conts[j];
// Reset source pointers to prevent data deletion.
cset.conts[j].verts = 0;
cset.conts[j].rverts = 0;
}
rcFree(cset.conts);
cset.conts = newConts;
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
}
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM);
if (!cont->verts)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts);
return false;
}
memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
cont->nrverts = verts.size()/4;
cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
if (!cont->rverts)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts);
return false;
}
memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
/* cont->cx = cont->cy = cont->cz = 0;
for (int i = 0; i < cont->nverts; ++i)
{
cont->cx += cont->verts[i*4+0];
cont->cy += cont->verts[i*4+1];
cont->cz += cont->verts[i*4+2];
}
cont->cx /= cont->nverts;
cont->cy /= cont->nverts;
cont->cz /= cont->nverts;*/
cont->reg = reg;
cont->area = area;
}
}
}
}
// Check and merge droppings.
// Sometimes the previous algorithms can fail and create several contours
// per area. This pass will try to merge the holes into the main region.
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
// Check if the contour is would backwards.
if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
{
// Find another contour which has the same region ID.
int mergeIdx = -1;
for (int j = 0; j < cset.nconts; ++j)
{
if (i == j) continue;
if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
{
// Make sure the polygon is correctly oriented.
if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
{
mergeIdx = j;
break;
}
}
}
if (mergeIdx == -1)
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
}
else
{
rcContour& mcont = cset.conts[mergeIdx];
// Merge by closest points.
int ia = 0, ib = 0;
getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
if (ia == -1 || ib == -1)
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
continue;
}
if (!mergeContours(mcont, cont, ia, ib))
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
continue;
}
}
}
}
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
return true;
}

View File

@@ -0,0 +1,181 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAssert.h"
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_LOW_OBSTACLES);
const int w = solid.width;
const int h = solid.height;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
rcSpan* ps = 0;
bool previousWalkable = false;
unsigned char previousArea = RC_NULL_AREA;
for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
{
const bool walkable = s->area != RC_NULL_AREA;
// If current span is not walkable, but there is walkable
// span just below it, mark the span above it walkable too.
if (!walkable && previousWalkable)
{
if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
s->area = previousArea;
}
// Copy walkable flag so that it cannot propagate
// past multiple non-walkable objects.
previousWalkable = walkable;
previousArea = s->area;
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_LOW_OBSTACLES);
}
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& solid)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_BORDER);
const int w = solid.width;
const int h = solid.height;
const int MAX_HEIGHT = 0xffff;
// Mark border spans.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
{
// Skip non walkable spans.
if (s->area == RC_NULL_AREA)
continue;
const int bot = (int)(s->smax);
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
// Find neighbours minimum height.
int minh = MAX_HEIGHT;
// Min and max height of accessible neighbours.
int asmin = s->smax;
int asmax = s->smax;
for (int dir = 0; dir < 4; ++dir)
{
int dx = x + rcGetDirOffsetX(dir);
int dy = y + rcGetDirOffsetY(dir);
// Skip neighbours which are out of bounds.
if (dx < 0 || dy < 0 || dx >= w || dy >= h)
{
minh = rcMin(minh, -walkableClimb - bot);
continue;
}
// From minus infinity to the first span.
rcSpan* ns = solid.spans[dx + dy*w];
int nbot = -walkableClimb;
int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
minh = rcMin(minh, nbot - bot);
// Rest of the spans.
for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
{
nbot = (int)ns->smax;
ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
{
minh = rcMin(minh, nbot - bot);
// Find min/max accessible neighbour height.
if (rcAbs(nbot - bot) <= walkableClimb)
{
if (nbot < asmin) asmin = nbot;
if (nbot > asmax) asmax = nbot;
}
}
}
}
// The current span is close to a ledge if the drop to any
// neighbour span is less than the walkableClimb.
if (minh < -walkableClimb)
s->area = RC_NULL_AREA;
// If the difference between all neighbours is too large,
// we are at steep slope, mark the span as ledge.
if ((asmax - asmin) > walkableClimb)
{
s->area = RC_NULL_AREA;
}
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_BORDER);
}
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_WALKABLE);
const int w = solid.width;
const int h = solid.height;
const int MAX_HEIGHT = 0xffff;
// Remove walkable flag from spans which do not have enough
// space above them for the agent to stand there.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
{
const int bot = (int)(s->smax);
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
if ((top - bot) <= walkableHeight)
s->area = RC_NULL_AREA;
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_WALKABLE);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,360 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
{
bool overlap = true;
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
return overlap;
}
inline bool overlapInterval(unsigned short amin, unsigned short amax,
unsigned short bmin, unsigned short bmax)
{
if (amax < bmin) return false;
if (amin > bmax) return false;
return true;
}
static rcSpan* allocSpan(rcHeightfield& hf)
{
// If running out of memory, allocate new page and update the freelist.
if (!hf.freelist || !hf.freelist->next)
{
// Create new page.
// Allocate memory for the new pool.
rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
if (!pool) return 0;
pool->next = 0;
// Add the pool into the list of pools.
pool->next = hf.pools;
hf.pools = pool;
// Add new items to the free list.
rcSpan* freelist = hf.freelist;
rcSpan* head = &pool->items[0];
rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
do
{
--it;
it->next = freelist;
freelist = it;
}
while (it != head);
hf.freelist = it;
}
// Pop item from in front of the free list.
rcSpan* it = hf.freelist;
hf.freelist = hf.freelist->next;
return it;
}
static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
{
if (!ptr) return;
// Add the node in front of the free list.
ptr->next = hf.freelist;
hf.freelist = ptr;
}
static void addSpan(rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr)
{
int idx = x + y*hf.width;
rcSpan* s = allocSpan(hf);
s->smin = smin;
s->smax = smax;
s->area = area;
s->next = 0;
// Empty cell, add he first span.
if (!hf.spans[idx])
{
hf.spans[idx] = s;
return;
}
rcSpan* prev = 0;
rcSpan* cur = hf.spans[idx];
// Insert and merge spans.
while (cur)
{
if (cur->smin > s->smax)
{
// Current span is further than the new span, break.
break;
}
else if (cur->smax < s->smin)
{
// Current span is before the new span advance.
prev = cur;
cur = cur->next;
}
else
{
// Merge spans.
if (cur->smin < s->smin)
s->smin = cur->smin;
if (cur->smax > s->smax)
s->smax = cur->smax;
// Merge flags.
if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
s->area = rcMax(s->area, cur->area);
// Remove current span.
rcSpan* next = cur->next;
freeSpan(hf, cur);
if (prev)
prev->next = next;
else
hf.spans[idx] = next;
cur = next;
}
}
// Insert new span.
if (prev)
{
s->next = prev->next;
prev->next = s;
}
else
{
s->next = hf.spans[idx];
hf.spans[idx] = s;
}
}
void rcAddSpan(rcContext* /*ctx*/, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr)
{
// rcAssert(ctx);
addSpan(hf, x,y, smin, smax, area, flagMergeThr);
}
static int clipPoly(const float* in, int n, float* out, float pnx, float pnz, float pd)
{
float d[12];
for (int i = 0; i < n; ++i)
d[i] = pnx*in[i*3+0] + pnz*in[i*3+2] + pd;
int m = 0;
for (int i = 0, j = n-1; i < n; j=i, ++i)
{
bool ina = d[j] >= 0;
bool inb = d[i] >= 0;
if (ina != inb)
{
float s = d[j] / (d[j] - d[i]);
out[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
out[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
out[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
m++;
}
if (inb)
{
out[m*3+0] = in[i*3+0];
out[m*3+1] = in[i*3+1];
out[m*3+2] = in[i*3+2];
m++;
}
}
return m;
}
static void rasterizeTri(const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& hf,
const float* bmin, const float* bmax,
const float cs, const float ics, const float ich,
const int flagMergeThr)
{
const int w = hf.width;
const int h = hf.height;
float tmin[3], tmax[3];
const float by = bmax[1] - bmin[1];
// Calculate the bounding box of the triangle.
rcVcopy(tmin, v0);
rcVcopy(tmax, v0);
rcVmin(tmin, v1);
rcVmin(tmin, v2);
rcVmax(tmax, v1);
rcVmax(tmax, v2);
// If the triangle does not touch the bbox of the heightfield, skip the triagle.
if (!overlapBounds(bmin, bmax, tmin, tmax))
return;
// Calculate the footpring of the triangle on the grid.
int x0 = (int)((tmin[0] - bmin[0])*ics);
int y0 = (int)((tmin[2] - bmin[2])*ics);
int x1 = (int)((tmax[0] - bmin[0])*ics);
int y1 = (int)((tmax[2] - bmin[2])*ics);
x0 = rcClamp(x0, 0, w-1);
y0 = rcClamp(y0, 0, h-1);
x1 = rcClamp(x1, 0, w-1);
y1 = rcClamp(y1, 0, h-1);
// Clip the triangle into all grid cells it touches.
float in[7*3], out[7*3], inrow[7*3];
for (int y = y0; y <= y1; ++y)
{
// Clip polygon to row.
rcVcopy(&in[0], v0);
rcVcopy(&in[1*3], v1);
rcVcopy(&in[2*3], v2);
int nvrow = 3;
const float cz = bmin[2] + y*cs;
nvrow = clipPoly(in, nvrow, out, 0, 1, -cz);
if (nvrow < 3) continue;
nvrow = clipPoly(out, nvrow, inrow, 0, -1, cz+cs);
if (nvrow < 3) continue;
for (int x = x0; x <= x1; ++x)
{
// Clip polygon to column.
int nv = nvrow;
const float cx = bmin[0] + x*cs;
nv = clipPoly(inrow, nv, out, 1, 0, -cx);
if (nv < 3) continue;
nv = clipPoly(out, nv, in, -1, 0, cx+cs);
if (nv < 3) continue;
// Calculate min and max of the span.
float smin = in[1], smax = in[1];
for (int i = 1; i < nv; ++i)
{
smin = rcMin(smin, in[i*3+1]);
smax = rcMax(smax, in[i*3+1]);
}
smin -= bmin[1];
smax -= bmin[1];
// Skip the span if it is outside the heightfield bbox
if (smax < 0.0f) continue;
if (smin > by) continue;
// Clamp the span to the heightfield bbox.
if (smin < 0.0f) smin = 0;
if (smax > by) smax = by;
// Snap the span to the heightfield height grid.
unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
addSpan(hf, x, y, ismin, ismax, area, flagMergeThr);
}
}
}
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
}
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
// Rasterize triangles.
for (int i = 0; i < nt; ++i)
{
const float* v0 = &verts[tris[i*3+0]*3];
const float* v1 = &verts[tris[i*3+1]*3];
const float* v2 = &verts[tris[i*3+2]*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
}
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
// Rasterize triangles.
for (int i = 0; i < nt; ++i)
{
const float* v0 = &verts[tris[i*3+0]*3];
const float* v1 = &verts[tris[i*3+1]*3];
const float* v2 = &verts[tris[i*3+2]*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
}
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
// Rasterize triangles.
for (int i = 0; i < nt; ++i)
{
const float* v0 = &verts[(i*3+0)*3];
const float* v1 = &verts[(i*3+1)*3];
const float* v2 = &verts[(i*3+2)*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
}

File diff suppressed because it is too large Load Diff